| Step | Hyp | Ref | Expression | 
						
							| 1 |  | alexsub.1 | ⊢ ( 𝜑  →  𝑋  ∈  UFL ) | 
						
							| 2 |  | alexsub.2 | ⊢ ( 𝜑  →  𝑋  =  ∪  𝐵 ) | 
						
							| 3 |  | alexsub.3 | ⊢ ( 𝜑  →  𝐽  =  ( topGen ‘ ( fi ‘ 𝐵 ) ) ) | 
						
							| 4 |  | alexsub.4 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ⊆  𝐵  ∧  𝑋  =  ∪  𝑥 ) )  →  ∃ 𝑦  ∈  ( 𝒫  𝑥  ∩  Fin ) 𝑋  =  ∪  𝑦 ) | 
						
							| 5 |  | alexsub.5 | ⊢ ( 𝜑  →  𝐹  ∈  ( UFil ‘ 𝑋 ) ) | 
						
							| 6 |  | alexsub.6 | ⊢ ( 𝜑  →  ( 𝐽  fLim  𝐹 )  =  ∅ ) | 
						
							| 7 |  | eldif | ⊢ ( 𝑥  ∈  ( 𝑋  ∖  ∪  ( 𝐵  ∖  𝐹 ) )  ↔  ( 𝑥  ∈  𝑋  ∧  ¬  𝑥  ∈  ∪  ( 𝐵  ∖  𝐹 ) ) ) | 
						
							| 8 | 3 | eleq2d | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝐽  ↔  𝑦  ∈  ( topGen ‘ ( fi ‘ 𝐵 ) ) ) ) | 
						
							| 9 | 8 | anbi1d | ⊢ ( 𝜑  →  ( ( 𝑦  ∈  𝐽  ∧  𝑥  ∈  𝑦 )  ↔  ( 𝑦  ∈  ( topGen ‘ ( fi ‘ 𝐵 ) )  ∧  𝑥  ∈  𝑦 ) ) ) | 
						
							| 10 | 9 | biimpa | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐽  ∧  𝑥  ∈  𝑦 ) )  →  ( 𝑦  ∈  ( topGen ‘ ( fi ‘ 𝐵 ) )  ∧  𝑥  ∈  𝑦 ) ) | 
						
							| 11 | 10 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  ¬  𝑥  ∈  ∪  ( 𝐵  ∖  𝐹 ) ) )  ∧  ( 𝑦  ∈  𝐽  ∧  𝑥  ∈  𝑦 ) )  →  ( 𝑦  ∈  ( topGen ‘ ( fi ‘ 𝐵 ) )  ∧  𝑥  ∈  𝑦 ) ) | 
						
							| 12 |  | tg2 | ⊢ ( ( 𝑦  ∈  ( topGen ‘ ( fi ‘ 𝐵 ) )  ∧  𝑥  ∈  𝑦 )  →  ∃ 𝑧  ∈  ( fi ‘ 𝐵 ) ( 𝑥  ∈  𝑧  ∧  𝑧  ⊆  𝑦 ) ) | 
						
							| 13 | 11 12 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  ¬  𝑥  ∈  ∪  ( 𝐵  ∖  𝐹 ) ) )  ∧  ( 𝑦  ∈  𝐽  ∧  𝑥  ∈  𝑦 ) )  →  ∃ 𝑧  ∈  ( fi ‘ 𝐵 ) ( 𝑥  ∈  𝑧  ∧  𝑧  ⊆  𝑦 ) ) | 
						
							| 14 |  | ufilfil | ⊢ ( 𝐹  ∈  ( UFil ‘ 𝑋 )  →  𝐹  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 15 | 5 14 | syl | ⊢ ( 𝜑  →  𝐹  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 16 | 15 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  ¬  𝑥  ∈  ∪  ( 𝐵  ∖  𝐹 ) ) )  ∧  ( 𝑦  ∈  𝐽  ∧  𝑥  ∈  𝑦 ) )  ∧  ( 𝑧  ∈  ( fi ‘ 𝐵 )  ∧  ( 𝑥  ∈  𝑧  ∧  𝑧  ⊆  𝑦 ) ) )  →  𝐹  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 17 | 5 | elfvexd | ⊢ ( 𝜑  →  𝑋  ∈  V ) | 
						
							| 18 | 2 17 | eqeltrrd | ⊢ ( 𝜑  →  ∪  𝐵  ∈  V ) | 
						
							| 19 |  | uniexb | ⊢ ( 𝐵  ∈  V  ↔  ∪  𝐵  ∈  V ) | 
						
							| 20 | 18 19 | sylibr | ⊢ ( 𝜑  →  𝐵  ∈  V ) | 
						
							| 21 |  | elfi2 | ⊢ ( 𝐵  ∈  V  →  ( 𝑧  ∈  ( fi ‘ 𝐵 )  ↔  ∃ 𝑦  ∈  ( ( 𝒫  𝐵  ∩  Fin )  ∖  { ∅ } ) 𝑧  =  ∩  𝑦 ) ) | 
						
							| 22 | 20 21 | syl | ⊢ ( 𝜑  →  ( 𝑧  ∈  ( fi ‘ 𝐵 )  ↔  ∃ 𝑦  ∈  ( ( 𝒫  𝐵  ∩  Fin )  ∖  { ∅ } ) 𝑧  =  ∩  𝑦 ) ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  ¬  𝑥  ∈  ∪  ( 𝐵  ∖  𝐹 ) ) )  →  ( 𝑧  ∈  ( fi ‘ 𝐵 )  ↔  ∃ 𝑦  ∈  ( ( 𝒫  𝐵  ∩  Fin )  ∖  { ∅ } ) 𝑧  =  ∩  𝑦 ) ) | 
						
							| 24 | 15 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  ¬  𝑥  ∈  ∪  ( 𝐵  ∖  𝐹 ) ) )  ∧  ( 𝑦  ∈  ( ( 𝒫  𝐵  ∩  Fin )  ∖  { ∅ } )  ∧  𝑥  ∈  ∩  𝑦 ) )  →  𝐹  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 25 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  ¬  𝑥  ∈  ∪  ( 𝐵  ∖  𝐹 ) ) )  ∧  ( ( 𝑦  ∈  ( ( 𝒫  𝐵  ∩  Fin )  ∖  { ∅ } )  ∧  𝑥  ∈  ∩  𝑦 )  ∧  𝑧  ∈  𝑦 ) )  →  ¬  𝑥  ∈  ∪  ( 𝐵  ∖  𝐹 ) ) | 
						
							| 26 |  | intss1 | ⊢ ( 𝑧  ∈  𝑦  →  ∩  𝑦  ⊆  𝑧 ) | 
						
							| 27 | 26 | adantl | ⊢ ( ( ( 𝑦  ∈  ( ( 𝒫  𝐵  ∩  Fin )  ∖  { ∅ } )  ∧  𝑥  ∈  ∩  𝑦 )  ∧  𝑧  ∈  𝑦 )  →  ∩  𝑦  ⊆  𝑧 ) | 
						
							| 28 |  | simplr | ⊢ ( ( ( 𝑦  ∈  ( ( 𝒫  𝐵  ∩  Fin )  ∖  { ∅ } )  ∧  𝑥  ∈  ∩  𝑦 )  ∧  𝑧  ∈  𝑦 )  →  𝑥  ∈  ∩  𝑦 ) | 
						
							| 29 | 27 28 | sseldd | ⊢ ( ( ( 𝑦  ∈  ( ( 𝒫  𝐵  ∩  Fin )  ∖  { ∅ } )  ∧  𝑥  ∈  ∩  𝑦 )  ∧  𝑧  ∈  𝑦 )  →  𝑥  ∈  𝑧 ) | 
						
							| 30 | 29 | ad2antlr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  ¬  𝑥  ∈  ∪  ( 𝐵  ∖  𝐹 ) ) )  ∧  ( ( 𝑦  ∈  ( ( 𝒫  𝐵  ∩  Fin )  ∖  { ∅ } )  ∧  𝑥  ∈  ∩  𝑦 )  ∧  𝑧  ∈  𝑦 ) )  ∧  ¬  𝑧  ∈  𝐹 )  →  𝑥  ∈  𝑧 ) | 
						
							| 31 |  | eldifsn | ⊢ ( 𝑦  ∈  ( ( 𝒫  𝐵  ∩  Fin )  ∖  { ∅ } )  ↔  ( 𝑦  ∈  ( 𝒫  𝐵  ∩  Fin )  ∧  𝑦  ≠  ∅ ) ) | 
						
							| 32 | 31 | simplbi | ⊢ ( 𝑦  ∈  ( ( 𝒫  𝐵  ∩  Fin )  ∖  { ∅ } )  →  𝑦  ∈  ( 𝒫  𝐵  ∩  Fin ) ) | 
						
							| 33 | 32 | ad2antrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  ¬  𝑥  ∈  ∪  ( 𝐵  ∖  𝐹 ) ) )  ∧  ( 𝑦  ∈  ( ( 𝒫  𝐵  ∩  Fin )  ∖  { ∅ } )  ∧  𝑥  ∈  ∩  𝑦 ) )  →  𝑦  ∈  ( 𝒫  𝐵  ∩  Fin ) ) | 
						
							| 34 |  | elfpw | ⊢ ( 𝑦  ∈  ( 𝒫  𝐵  ∩  Fin )  ↔  ( 𝑦  ⊆  𝐵  ∧  𝑦  ∈  Fin ) ) | 
						
							| 35 | 34 | simplbi | ⊢ ( 𝑦  ∈  ( 𝒫  𝐵  ∩  Fin )  →  𝑦  ⊆  𝐵 ) | 
						
							| 36 | 33 35 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  ¬  𝑥  ∈  ∪  ( 𝐵  ∖  𝐹 ) ) )  ∧  ( 𝑦  ∈  ( ( 𝒫  𝐵  ∩  Fin )  ∖  { ∅ } )  ∧  𝑥  ∈  ∩  𝑦 ) )  →  𝑦  ⊆  𝐵 ) | 
						
							| 37 | 36 | sselda | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  ¬  𝑥  ∈  ∪  ( 𝐵  ∖  𝐹 ) ) )  ∧  ( 𝑦  ∈  ( ( 𝒫  𝐵  ∩  Fin )  ∖  { ∅ } )  ∧  𝑥  ∈  ∩  𝑦 ) )  ∧  𝑧  ∈  𝑦 )  →  𝑧  ∈  𝐵 ) | 
						
							| 38 | 37 | anasss | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  ¬  𝑥  ∈  ∪  ( 𝐵  ∖  𝐹 ) ) )  ∧  ( ( 𝑦  ∈  ( ( 𝒫  𝐵  ∩  Fin )  ∖  { ∅ } )  ∧  𝑥  ∈  ∩  𝑦 )  ∧  𝑧  ∈  𝑦 ) )  →  𝑧  ∈  𝐵 ) | 
						
							| 39 | 38 | anim1i | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  ¬  𝑥  ∈  ∪  ( 𝐵  ∖  𝐹 ) ) )  ∧  ( ( 𝑦  ∈  ( ( 𝒫  𝐵  ∩  Fin )  ∖  { ∅ } )  ∧  𝑥  ∈  ∩  𝑦 )  ∧  𝑧  ∈  𝑦 ) )  ∧  ¬  𝑧  ∈  𝐹 )  →  ( 𝑧  ∈  𝐵  ∧  ¬  𝑧  ∈  𝐹 ) ) | 
						
							| 40 |  | eldif | ⊢ ( 𝑧  ∈  ( 𝐵  ∖  𝐹 )  ↔  ( 𝑧  ∈  𝐵  ∧  ¬  𝑧  ∈  𝐹 ) ) | 
						
							| 41 | 39 40 | sylibr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  ¬  𝑥  ∈  ∪  ( 𝐵  ∖  𝐹 ) ) )  ∧  ( ( 𝑦  ∈  ( ( 𝒫  𝐵  ∩  Fin )  ∖  { ∅ } )  ∧  𝑥  ∈  ∩  𝑦 )  ∧  𝑧  ∈  𝑦 ) )  ∧  ¬  𝑧  ∈  𝐹 )  →  𝑧  ∈  ( 𝐵  ∖  𝐹 ) ) | 
						
							| 42 |  | elunii | ⊢ ( ( 𝑥  ∈  𝑧  ∧  𝑧  ∈  ( 𝐵  ∖  𝐹 ) )  →  𝑥  ∈  ∪  ( 𝐵  ∖  𝐹 ) ) | 
						
							| 43 | 30 41 42 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  ¬  𝑥  ∈  ∪  ( 𝐵  ∖  𝐹 ) ) )  ∧  ( ( 𝑦  ∈  ( ( 𝒫  𝐵  ∩  Fin )  ∖  { ∅ } )  ∧  𝑥  ∈  ∩  𝑦 )  ∧  𝑧  ∈  𝑦 ) )  ∧  ¬  𝑧  ∈  𝐹 )  →  𝑥  ∈  ∪  ( 𝐵  ∖  𝐹 ) ) | 
						
							| 44 | 43 | ex | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  ¬  𝑥  ∈  ∪  ( 𝐵  ∖  𝐹 ) ) )  ∧  ( ( 𝑦  ∈  ( ( 𝒫  𝐵  ∩  Fin )  ∖  { ∅ } )  ∧  𝑥  ∈  ∩  𝑦 )  ∧  𝑧  ∈  𝑦 ) )  →  ( ¬  𝑧  ∈  𝐹  →  𝑥  ∈  ∪  ( 𝐵  ∖  𝐹 ) ) ) | 
						
							| 45 | 25 44 | mt3d | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  ¬  𝑥  ∈  ∪  ( 𝐵  ∖  𝐹 ) ) )  ∧  ( ( 𝑦  ∈  ( ( 𝒫  𝐵  ∩  Fin )  ∖  { ∅ } )  ∧  𝑥  ∈  ∩  𝑦 )  ∧  𝑧  ∈  𝑦 ) )  →  𝑧  ∈  𝐹 ) | 
						
							| 46 | 45 | expr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  ¬  𝑥  ∈  ∪  ( 𝐵  ∖  𝐹 ) ) )  ∧  ( 𝑦  ∈  ( ( 𝒫  𝐵  ∩  Fin )  ∖  { ∅ } )  ∧  𝑥  ∈  ∩  𝑦 ) )  →  ( 𝑧  ∈  𝑦  →  𝑧  ∈  𝐹 ) ) | 
						
							| 47 | 46 | ssrdv | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  ¬  𝑥  ∈  ∪  ( 𝐵  ∖  𝐹 ) ) )  ∧  ( 𝑦  ∈  ( ( 𝒫  𝐵  ∩  Fin )  ∖  { ∅ } )  ∧  𝑥  ∈  ∩  𝑦 ) )  →  𝑦  ⊆  𝐹 ) | 
						
							| 48 |  | eldifsni | ⊢ ( 𝑦  ∈  ( ( 𝒫  𝐵  ∩  Fin )  ∖  { ∅ } )  →  𝑦  ≠  ∅ ) | 
						
							| 49 | 48 | ad2antrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  ¬  𝑥  ∈  ∪  ( 𝐵  ∖  𝐹 ) ) )  ∧  ( 𝑦  ∈  ( ( 𝒫  𝐵  ∩  Fin )  ∖  { ∅ } )  ∧  𝑥  ∈  ∩  𝑦 ) )  →  𝑦  ≠  ∅ ) | 
						
							| 50 |  | elinel2 | ⊢ ( 𝑦  ∈  ( 𝒫  𝐵  ∩  Fin )  →  𝑦  ∈  Fin ) | 
						
							| 51 | 33 50 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  ¬  𝑥  ∈  ∪  ( 𝐵  ∖  𝐹 ) ) )  ∧  ( 𝑦  ∈  ( ( 𝒫  𝐵  ∩  Fin )  ∖  { ∅ } )  ∧  𝑥  ∈  ∩  𝑦 ) )  →  𝑦  ∈  Fin ) | 
						
							| 52 |  | elfir | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝑦  ⊆  𝐹  ∧  𝑦  ≠  ∅  ∧  𝑦  ∈  Fin ) )  →  ∩  𝑦  ∈  ( fi ‘ 𝐹 ) ) | 
						
							| 53 | 24 47 49 51 52 | syl13anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  ¬  𝑥  ∈  ∪  ( 𝐵  ∖  𝐹 ) ) )  ∧  ( 𝑦  ∈  ( ( 𝒫  𝐵  ∩  Fin )  ∖  { ∅ } )  ∧  𝑥  ∈  ∩  𝑦 ) )  →  ∩  𝑦  ∈  ( fi ‘ 𝐹 ) ) | 
						
							| 54 |  | filfi | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  ( fi ‘ 𝐹 )  =  𝐹 ) | 
						
							| 55 | 24 54 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  ¬  𝑥  ∈  ∪  ( 𝐵  ∖  𝐹 ) ) )  ∧  ( 𝑦  ∈  ( ( 𝒫  𝐵  ∩  Fin )  ∖  { ∅ } )  ∧  𝑥  ∈  ∩  𝑦 ) )  →  ( fi ‘ 𝐹 )  =  𝐹 ) | 
						
							| 56 | 53 55 | eleqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  ¬  𝑥  ∈  ∪  ( 𝐵  ∖  𝐹 ) ) )  ∧  ( 𝑦  ∈  ( ( 𝒫  𝐵  ∩  Fin )  ∖  { ∅ } )  ∧  𝑥  ∈  ∩  𝑦 ) )  →  ∩  𝑦  ∈  𝐹 ) | 
						
							| 57 | 56 | expr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  ¬  𝑥  ∈  ∪  ( 𝐵  ∖  𝐹 ) ) )  ∧  𝑦  ∈  ( ( 𝒫  𝐵  ∩  Fin )  ∖  { ∅ } ) )  →  ( 𝑥  ∈  ∩  𝑦  →  ∩  𝑦  ∈  𝐹 ) ) | 
						
							| 58 |  | eleq2 | ⊢ ( 𝑧  =  ∩  𝑦  →  ( 𝑥  ∈  𝑧  ↔  𝑥  ∈  ∩  𝑦 ) ) | 
						
							| 59 |  | eleq1 | ⊢ ( 𝑧  =  ∩  𝑦  →  ( 𝑧  ∈  𝐹  ↔  ∩  𝑦  ∈  𝐹 ) ) | 
						
							| 60 | 58 59 | imbi12d | ⊢ ( 𝑧  =  ∩  𝑦  →  ( ( 𝑥  ∈  𝑧  →  𝑧  ∈  𝐹 )  ↔  ( 𝑥  ∈  ∩  𝑦  →  ∩  𝑦  ∈  𝐹 ) ) ) | 
						
							| 61 | 57 60 | syl5ibrcom | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  ¬  𝑥  ∈  ∪  ( 𝐵  ∖  𝐹 ) ) )  ∧  𝑦  ∈  ( ( 𝒫  𝐵  ∩  Fin )  ∖  { ∅ } ) )  →  ( 𝑧  =  ∩  𝑦  →  ( 𝑥  ∈  𝑧  →  𝑧  ∈  𝐹 ) ) ) | 
						
							| 62 | 61 | rexlimdva | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  ¬  𝑥  ∈  ∪  ( 𝐵  ∖  𝐹 ) ) )  →  ( ∃ 𝑦  ∈  ( ( 𝒫  𝐵  ∩  Fin )  ∖  { ∅ } ) 𝑧  =  ∩  𝑦  →  ( 𝑥  ∈  𝑧  →  𝑧  ∈  𝐹 ) ) ) | 
						
							| 63 | 23 62 | sylbid | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  ¬  𝑥  ∈  ∪  ( 𝐵  ∖  𝐹 ) ) )  →  ( 𝑧  ∈  ( fi ‘ 𝐵 )  →  ( 𝑥  ∈  𝑧  →  𝑧  ∈  𝐹 ) ) ) | 
						
							| 64 | 63 | imp32 | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  ¬  𝑥  ∈  ∪  ( 𝐵  ∖  𝐹 ) ) )  ∧  ( 𝑧  ∈  ( fi ‘ 𝐵 )  ∧  𝑥  ∈  𝑧 ) )  →  𝑧  ∈  𝐹 ) | 
						
							| 65 | 64 | adantrrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  ¬  𝑥  ∈  ∪  ( 𝐵  ∖  𝐹 ) ) )  ∧  ( 𝑧  ∈  ( fi ‘ 𝐵 )  ∧  ( 𝑥  ∈  𝑧  ∧  𝑧  ⊆  𝑦 ) ) )  →  𝑧  ∈  𝐹 ) | 
						
							| 66 | 65 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  ¬  𝑥  ∈  ∪  ( 𝐵  ∖  𝐹 ) ) )  ∧  ( 𝑦  ∈  𝐽  ∧  𝑥  ∈  𝑦 ) )  ∧  ( 𝑧  ∈  ( fi ‘ 𝐵 )  ∧  ( 𝑥  ∈  𝑧  ∧  𝑧  ⊆  𝑦 ) ) )  →  𝑧  ∈  𝐹 ) | 
						
							| 67 |  | elssuni | ⊢ ( 𝑦  ∈  𝐽  →  𝑦  ⊆  ∪  𝐽 ) | 
						
							| 68 | 67 | ad2antrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  ¬  𝑥  ∈  ∪  ( 𝐵  ∖  𝐹 ) ) )  ∧  ( 𝑦  ∈  𝐽  ∧  𝑥  ∈  𝑦 ) )  →  𝑦  ⊆  ∪  𝐽 ) | 
						
							| 69 |  | fibas | ⊢ ( fi ‘ 𝐵 )  ∈  TopBases | 
						
							| 70 |  | tgtopon | ⊢ ( ( fi ‘ 𝐵 )  ∈  TopBases  →  ( topGen ‘ ( fi ‘ 𝐵 ) )  ∈  ( TopOn ‘ ∪  ( fi ‘ 𝐵 ) ) ) | 
						
							| 71 | 69 70 | ax-mp | ⊢ ( topGen ‘ ( fi ‘ 𝐵 ) )  ∈  ( TopOn ‘ ∪  ( fi ‘ 𝐵 ) ) | 
						
							| 72 | 3 71 | eqeltrdi | ⊢ ( 𝜑  →  𝐽  ∈  ( TopOn ‘ ∪  ( fi ‘ 𝐵 ) ) ) | 
						
							| 73 |  | fiuni | ⊢ ( 𝐵  ∈  V  →  ∪  𝐵  =  ∪  ( fi ‘ 𝐵 ) ) | 
						
							| 74 | 20 73 | syl | ⊢ ( 𝜑  →  ∪  𝐵  =  ∪  ( fi ‘ 𝐵 ) ) | 
						
							| 75 | 2 74 | eqtrd | ⊢ ( 𝜑  →  𝑋  =  ∪  ( fi ‘ 𝐵 ) ) | 
						
							| 76 | 75 | fveq2d | ⊢ ( 𝜑  →  ( TopOn ‘ 𝑋 )  =  ( TopOn ‘ ∪  ( fi ‘ 𝐵 ) ) ) | 
						
							| 77 | 72 76 | eleqtrrd | ⊢ ( 𝜑  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 78 |  | toponuni | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  𝑋  =  ∪  𝐽 ) | 
						
							| 79 | 77 78 | syl | ⊢ ( 𝜑  →  𝑋  =  ∪  𝐽 ) | 
						
							| 80 | 79 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  ¬  𝑥  ∈  ∪  ( 𝐵  ∖  𝐹 ) ) )  ∧  ( 𝑦  ∈  𝐽  ∧  𝑥  ∈  𝑦 ) )  →  𝑋  =  ∪  𝐽 ) | 
						
							| 81 | 68 80 | sseqtrrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  ¬  𝑥  ∈  ∪  ( 𝐵  ∖  𝐹 ) ) )  ∧  ( 𝑦  ∈  𝐽  ∧  𝑥  ∈  𝑦 ) )  →  𝑦  ⊆  𝑋 ) | 
						
							| 82 | 81 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  ¬  𝑥  ∈  ∪  ( 𝐵  ∖  𝐹 ) ) )  ∧  ( 𝑦  ∈  𝐽  ∧  𝑥  ∈  𝑦 ) )  ∧  ( 𝑧  ∈  ( fi ‘ 𝐵 )  ∧  ( 𝑥  ∈  𝑧  ∧  𝑧  ⊆  𝑦 ) ) )  →  𝑦  ⊆  𝑋 ) | 
						
							| 83 |  | simprrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  ¬  𝑥  ∈  ∪  ( 𝐵  ∖  𝐹 ) ) )  ∧  ( 𝑦  ∈  𝐽  ∧  𝑥  ∈  𝑦 ) )  ∧  ( 𝑧  ∈  ( fi ‘ 𝐵 )  ∧  ( 𝑥  ∈  𝑧  ∧  𝑧  ⊆  𝑦 ) ) )  →  𝑧  ⊆  𝑦 ) | 
						
							| 84 |  | filss | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝑧  ∈  𝐹  ∧  𝑦  ⊆  𝑋  ∧  𝑧  ⊆  𝑦 ) )  →  𝑦  ∈  𝐹 ) | 
						
							| 85 | 16 66 82 83 84 | syl13anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  ¬  𝑥  ∈  ∪  ( 𝐵  ∖  𝐹 ) ) )  ∧  ( 𝑦  ∈  𝐽  ∧  𝑥  ∈  𝑦 ) )  ∧  ( 𝑧  ∈  ( fi ‘ 𝐵 )  ∧  ( 𝑥  ∈  𝑧  ∧  𝑧  ⊆  𝑦 ) ) )  →  𝑦  ∈  𝐹 ) | 
						
							| 86 | 13 85 | rexlimddv | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  ¬  𝑥  ∈  ∪  ( 𝐵  ∖  𝐹 ) ) )  ∧  ( 𝑦  ∈  𝐽  ∧  𝑥  ∈  𝑦 ) )  →  𝑦  ∈  𝐹 ) | 
						
							| 87 | 86 | expr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  ¬  𝑥  ∈  ∪  ( 𝐵  ∖  𝐹 ) ) )  ∧  𝑦  ∈  𝐽 )  →  ( 𝑥  ∈  𝑦  →  𝑦  ∈  𝐹 ) ) | 
						
							| 88 | 87 | ralrimiva | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  ¬  𝑥  ∈  ∪  ( 𝐵  ∖  𝐹 ) ) )  →  ∀ 𝑦  ∈  𝐽 ( 𝑥  ∈  𝑦  →  𝑦  ∈  𝐹 ) ) | 
						
							| 89 | 88 | expr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ¬  𝑥  ∈  ∪  ( 𝐵  ∖  𝐹 )  →  ∀ 𝑦  ∈  𝐽 ( 𝑥  ∈  𝑦  →  𝑦  ∈  𝐹 ) ) ) | 
						
							| 90 | 89 | imdistanda | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝑋  ∧  ¬  𝑥  ∈  ∪  ( 𝐵  ∖  𝐹 ) )  →  ( 𝑥  ∈  𝑋  ∧  ∀ 𝑦  ∈  𝐽 ( 𝑥  ∈  𝑦  →  𝑦  ∈  𝐹 ) ) ) ) | 
						
							| 91 | 7 90 | biimtrid | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑋  ∖  ∪  ( 𝐵  ∖  𝐹 ) )  →  ( 𝑥  ∈  𝑋  ∧  ∀ 𝑦  ∈  𝐽 ( 𝑥  ∈  𝑦  →  𝑦  ∈  𝐹 ) ) ) ) | 
						
							| 92 |  | flimopn | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  →  ( 𝑥  ∈  ( 𝐽  fLim  𝐹 )  ↔  ( 𝑥  ∈  𝑋  ∧  ∀ 𝑦  ∈  𝐽 ( 𝑥  ∈  𝑦  →  𝑦  ∈  𝐹 ) ) ) ) | 
						
							| 93 | 77 15 92 | syl2anc | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐽  fLim  𝐹 )  ↔  ( 𝑥  ∈  𝑋  ∧  ∀ 𝑦  ∈  𝐽 ( 𝑥  ∈  𝑦  →  𝑦  ∈  𝐹 ) ) ) ) | 
						
							| 94 | 91 93 | sylibrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑋  ∖  ∪  ( 𝐵  ∖  𝐹 ) )  →  𝑥  ∈  ( 𝐽  fLim  𝐹 ) ) ) | 
						
							| 95 | 94 | ssrdv | ⊢ ( 𝜑  →  ( 𝑋  ∖  ∪  ( 𝐵  ∖  𝐹 ) )  ⊆  ( 𝐽  fLim  𝐹 ) ) | 
						
							| 96 |  | sseq0 | ⊢ ( ( ( 𝑋  ∖  ∪  ( 𝐵  ∖  𝐹 ) )  ⊆  ( 𝐽  fLim  𝐹 )  ∧  ( 𝐽  fLim  𝐹 )  =  ∅ )  →  ( 𝑋  ∖  ∪  ( 𝐵  ∖  𝐹 ) )  =  ∅ ) | 
						
							| 97 | 95 6 96 | syl2anc | ⊢ ( 𝜑  →  ( 𝑋  ∖  ∪  ( 𝐵  ∖  𝐹 ) )  =  ∅ ) | 
						
							| 98 |  | ssdif0 | ⊢ ( 𝑋  ⊆  ∪  ( 𝐵  ∖  𝐹 )  ↔  ( 𝑋  ∖  ∪  ( 𝐵  ∖  𝐹 ) )  =  ∅ ) | 
						
							| 99 | 97 98 | sylibr | ⊢ ( 𝜑  →  𝑋  ⊆  ∪  ( 𝐵  ∖  𝐹 ) ) | 
						
							| 100 |  | difss | ⊢ ( 𝐵  ∖  𝐹 )  ⊆  𝐵 | 
						
							| 101 | 100 | unissi | ⊢ ∪  ( 𝐵  ∖  𝐹 )  ⊆  ∪  𝐵 | 
						
							| 102 | 101 2 | sseqtrrid | ⊢ ( 𝜑  →  ∪  ( 𝐵  ∖  𝐹 )  ⊆  𝑋 ) | 
						
							| 103 | 99 102 | eqssd | ⊢ ( 𝜑  →  𝑋  =  ∪  ( 𝐵  ∖  𝐹 ) ) | 
						
							| 104 | 103 100 | jctil | ⊢ ( 𝜑  →  ( ( 𝐵  ∖  𝐹 )  ⊆  𝐵  ∧  𝑋  =  ∪  ( 𝐵  ∖  𝐹 ) ) ) | 
						
							| 105 | 20 | difexd | ⊢ ( 𝜑  →  ( 𝐵  ∖  𝐹 )  ∈  V ) | 
						
							| 106 | 105 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝐵  ∖  𝐹 )  ⊆  𝐵  ∧  𝑋  =  ∪  ( 𝐵  ∖  𝐹 ) ) )  →  ( 𝐵  ∖  𝐹 )  ∈  V ) | 
						
							| 107 |  | sseq1 | ⊢ ( 𝑥  =  ( 𝐵  ∖  𝐹 )  →  ( 𝑥  ⊆  𝐵  ↔  ( 𝐵  ∖  𝐹 )  ⊆  𝐵 ) ) | 
						
							| 108 |  | unieq | ⊢ ( 𝑥  =  ( 𝐵  ∖  𝐹 )  →  ∪  𝑥  =  ∪  ( 𝐵  ∖  𝐹 ) ) | 
						
							| 109 | 108 | eqeq2d | ⊢ ( 𝑥  =  ( 𝐵  ∖  𝐹 )  →  ( 𝑋  =  ∪  𝑥  ↔  𝑋  =  ∪  ( 𝐵  ∖  𝐹 ) ) ) | 
						
							| 110 | 107 109 | anbi12d | ⊢ ( 𝑥  =  ( 𝐵  ∖  𝐹 )  →  ( ( 𝑥  ⊆  𝐵  ∧  𝑋  =  ∪  𝑥 )  ↔  ( ( 𝐵  ∖  𝐹 )  ⊆  𝐵  ∧  𝑋  =  ∪  ( 𝐵  ∖  𝐹 ) ) ) ) | 
						
							| 111 | 110 | anbi2d | ⊢ ( 𝑥  =  ( 𝐵  ∖  𝐹 )  →  ( ( 𝜑  ∧  ( 𝑥  ⊆  𝐵  ∧  𝑋  =  ∪  𝑥 ) )  ↔  ( 𝜑  ∧  ( ( 𝐵  ∖  𝐹 )  ⊆  𝐵  ∧  𝑋  =  ∪  ( 𝐵  ∖  𝐹 ) ) ) ) ) | 
						
							| 112 |  | pweq | ⊢ ( 𝑥  =  ( 𝐵  ∖  𝐹 )  →  𝒫  𝑥  =  𝒫  ( 𝐵  ∖  𝐹 ) ) | 
						
							| 113 | 112 | ineq1d | ⊢ ( 𝑥  =  ( 𝐵  ∖  𝐹 )  →  ( 𝒫  𝑥  ∩  Fin )  =  ( 𝒫  ( 𝐵  ∖  𝐹 )  ∩  Fin ) ) | 
						
							| 114 | 113 | rexeqdv | ⊢ ( 𝑥  =  ( 𝐵  ∖  𝐹 )  →  ( ∃ 𝑦  ∈  ( 𝒫  𝑥  ∩  Fin ) 𝑋  =  ∪  𝑦  ↔  ∃ 𝑦  ∈  ( 𝒫  ( 𝐵  ∖  𝐹 )  ∩  Fin ) 𝑋  =  ∪  𝑦 ) ) | 
						
							| 115 | 111 114 | imbi12d | ⊢ ( 𝑥  =  ( 𝐵  ∖  𝐹 )  →  ( ( ( 𝜑  ∧  ( 𝑥  ⊆  𝐵  ∧  𝑋  =  ∪  𝑥 ) )  →  ∃ 𝑦  ∈  ( 𝒫  𝑥  ∩  Fin ) 𝑋  =  ∪  𝑦 )  ↔  ( ( 𝜑  ∧  ( ( 𝐵  ∖  𝐹 )  ⊆  𝐵  ∧  𝑋  =  ∪  ( 𝐵  ∖  𝐹 ) ) )  →  ∃ 𝑦  ∈  ( 𝒫  ( 𝐵  ∖  𝐹 )  ∩  Fin ) 𝑋  =  ∪  𝑦 ) ) ) | 
						
							| 116 | 115 4 | vtoclg | ⊢ ( ( 𝐵  ∖  𝐹 )  ∈  V  →  ( ( 𝜑  ∧  ( ( 𝐵  ∖  𝐹 )  ⊆  𝐵  ∧  𝑋  =  ∪  ( 𝐵  ∖  𝐹 ) ) )  →  ∃ 𝑦  ∈  ( 𝒫  ( 𝐵  ∖  𝐹 )  ∩  Fin ) 𝑋  =  ∪  𝑦 ) ) | 
						
							| 117 | 106 116 | mpcom | ⊢ ( ( 𝜑  ∧  ( ( 𝐵  ∖  𝐹 )  ⊆  𝐵  ∧  𝑋  =  ∪  ( 𝐵  ∖  𝐹 ) ) )  →  ∃ 𝑦  ∈  ( 𝒫  ( 𝐵  ∖  𝐹 )  ∩  Fin ) 𝑋  =  ∪  𝑦 ) | 
						
							| 118 | 104 117 | mpdan | ⊢ ( 𝜑  →  ∃ 𝑦  ∈  ( 𝒫  ( 𝐵  ∖  𝐹 )  ∩  Fin ) 𝑋  =  ∪  𝑦 ) | 
						
							| 119 |  | unieq | ⊢ ( 𝑦  =  ∅  →  ∪  𝑦  =  ∪  ∅ ) | 
						
							| 120 |  | uni0 | ⊢ ∪  ∅  =  ∅ | 
						
							| 121 | 119 120 | eqtrdi | ⊢ ( 𝑦  =  ∅  →  ∪  𝑦  =  ∅ ) | 
						
							| 122 | 121 | neeq2d | ⊢ ( 𝑦  =  ∅  →  ( 𝑋  ≠  ∪  𝑦  ↔  𝑋  ≠  ∅ ) ) | 
						
							| 123 |  | difssd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  ( 𝐵  ∖  𝐹 )  ∩  Fin ) )  →  ( 𝑋  ∖  𝑧 )  ⊆  𝑋 ) | 
						
							| 124 | 123 | ralrimivw | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  ( 𝐵  ∖  𝐹 )  ∩  Fin ) )  →  ∀ 𝑧  ∈  𝑦 ( 𝑋  ∖  𝑧 )  ⊆  𝑋 ) | 
						
							| 125 |  | riinn0 | ⊢ ( ( ∀ 𝑧  ∈  𝑦 ( 𝑋  ∖  𝑧 )  ⊆  𝑋  ∧  𝑦  ≠  ∅ )  →  ( 𝑋  ∩  ∩  𝑧  ∈  𝑦 ( 𝑋  ∖  𝑧 ) )  =  ∩  𝑧  ∈  𝑦 ( 𝑋  ∖  𝑧 ) ) | 
						
							| 126 | 124 125 | sylan | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  ( 𝐵  ∖  𝐹 )  ∩  Fin ) )  ∧  𝑦  ≠  ∅ )  →  ( 𝑋  ∩  ∩  𝑧  ∈  𝑦 ( 𝑋  ∖  𝑧 ) )  =  ∩  𝑧  ∈  𝑦 ( 𝑋  ∖  𝑧 ) ) | 
						
							| 127 | 17 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  ( 𝐵  ∖  𝐹 )  ∩  Fin ) )  ∧  𝑦  ≠  ∅ )  →  𝑋  ∈  V ) | 
						
							| 128 | 127 | difexd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  ( 𝐵  ∖  𝐹 )  ∩  Fin ) )  ∧  𝑦  ≠  ∅ )  →  ( 𝑋  ∖  𝑧 )  ∈  V ) | 
						
							| 129 | 128 | ralrimivw | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  ( 𝐵  ∖  𝐹 )  ∩  Fin ) )  ∧  𝑦  ≠  ∅ )  →  ∀ 𝑧  ∈  𝑦 ( 𝑋  ∖  𝑧 )  ∈  V ) | 
						
							| 130 |  | dfiin2g | ⊢ ( ∀ 𝑧  ∈  𝑦 ( 𝑋  ∖  𝑧 )  ∈  V  →  ∩  𝑧  ∈  𝑦 ( 𝑋  ∖  𝑧 )  =  ∩  { 𝑥  ∣  ∃ 𝑧  ∈  𝑦 𝑥  =  ( 𝑋  ∖  𝑧 ) } ) | 
						
							| 131 | 129 130 | syl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  ( 𝐵  ∖  𝐹 )  ∩  Fin ) )  ∧  𝑦  ≠  ∅ )  →  ∩  𝑧  ∈  𝑦 ( 𝑋  ∖  𝑧 )  =  ∩  { 𝑥  ∣  ∃ 𝑧  ∈  𝑦 𝑥  =  ( 𝑋  ∖  𝑧 ) } ) | 
						
							| 132 |  | eqid | ⊢ ( 𝑧  ∈  𝑦  ↦  ( 𝑋  ∖  𝑧 ) )  =  ( 𝑧  ∈  𝑦  ↦  ( 𝑋  ∖  𝑧 ) ) | 
						
							| 133 | 132 | rnmpt | ⊢ ran  ( 𝑧  ∈  𝑦  ↦  ( 𝑋  ∖  𝑧 ) )  =  { 𝑥  ∣  ∃ 𝑧  ∈  𝑦 𝑥  =  ( 𝑋  ∖  𝑧 ) } | 
						
							| 134 | 133 | inteqi | ⊢ ∩  ran  ( 𝑧  ∈  𝑦  ↦  ( 𝑋  ∖  𝑧 ) )  =  ∩  { 𝑥  ∣  ∃ 𝑧  ∈  𝑦 𝑥  =  ( 𝑋  ∖  𝑧 ) } | 
						
							| 135 | 131 134 | eqtr4di | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  ( 𝐵  ∖  𝐹 )  ∩  Fin ) )  ∧  𝑦  ≠  ∅ )  →  ∩  𝑧  ∈  𝑦 ( 𝑋  ∖  𝑧 )  =  ∩  ran  ( 𝑧  ∈  𝑦  ↦  ( 𝑋  ∖  𝑧 ) ) ) | 
						
							| 136 | 126 135 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  ( 𝐵  ∖  𝐹 )  ∩  Fin ) )  ∧  𝑦  ≠  ∅ )  →  ( 𝑋  ∩  ∩  𝑧  ∈  𝑦 ( 𝑋  ∖  𝑧 ) )  =  ∩  ran  ( 𝑧  ∈  𝑦  ↦  ( 𝑋  ∖  𝑧 ) ) ) | 
						
							| 137 | 15 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  ( 𝐵  ∖  𝐹 )  ∩  Fin ) )  ∧  𝑦  ≠  ∅ )  →  𝐹  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 138 |  | elfpw | ⊢ ( 𝑦  ∈  ( 𝒫  ( 𝐵  ∖  𝐹 )  ∩  Fin )  ↔  ( 𝑦  ⊆  ( 𝐵  ∖  𝐹 )  ∧  𝑦  ∈  Fin ) ) | 
						
							| 139 | 138 | simplbi | ⊢ ( 𝑦  ∈  ( 𝒫  ( 𝐵  ∖  𝐹 )  ∩  Fin )  →  𝑦  ⊆  ( 𝐵  ∖  𝐹 ) ) | 
						
							| 140 | 139 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  ( 𝐵  ∖  𝐹 )  ∩  Fin ) )  ∧  𝑦  ≠  ∅ )  →  𝑦  ⊆  ( 𝐵  ∖  𝐹 ) ) | 
						
							| 141 | 140 | sselda | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  ( 𝐵  ∖  𝐹 )  ∩  Fin ) )  ∧  𝑦  ≠  ∅ )  ∧  𝑧  ∈  𝑦 )  →  𝑧  ∈  ( 𝐵  ∖  𝐹 ) ) | 
						
							| 142 | 141 | eldifbd | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  ( 𝐵  ∖  𝐹 )  ∩  Fin ) )  ∧  𝑦  ≠  ∅ )  ∧  𝑧  ∈  𝑦 )  →  ¬  𝑧  ∈  𝐹 ) | 
						
							| 143 | 5 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  ( 𝐵  ∖  𝐹 )  ∩  Fin ) )  ∧  𝑦  ≠  ∅ )  ∧  𝑧  ∈  𝑦 )  →  𝐹  ∈  ( UFil ‘ 𝑋 ) ) | 
						
							| 144 | 140 | difss2d | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  ( 𝐵  ∖  𝐹 )  ∩  Fin ) )  ∧  𝑦  ≠  ∅ )  →  𝑦  ⊆  𝐵 ) | 
						
							| 145 | 144 | sselda | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  ( 𝐵  ∖  𝐹 )  ∩  Fin ) )  ∧  𝑦  ≠  ∅ )  ∧  𝑧  ∈  𝑦 )  →  𝑧  ∈  𝐵 ) | 
						
							| 146 |  | elssuni | ⊢ ( 𝑧  ∈  𝐵  →  𝑧  ⊆  ∪  𝐵 ) | 
						
							| 147 | 145 146 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  ( 𝐵  ∖  𝐹 )  ∩  Fin ) )  ∧  𝑦  ≠  ∅ )  ∧  𝑧  ∈  𝑦 )  →  𝑧  ⊆  ∪  𝐵 ) | 
						
							| 148 | 2 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  ( 𝐵  ∖  𝐹 )  ∩  Fin ) )  ∧  𝑦  ≠  ∅ )  ∧  𝑧  ∈  𝑦 )  →  𝑋  =  ∪  𝐵 ) | 
						
							| 149 | 147 148 | sseqtrrd | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  ( 𝐵  ∖  𝐹 )  ∩  Fin ) )  ∧  𝑦  ≠  ∅ )  ∧  𝑧  ∈  𝑦 )  →  𝑧  ⊆  𝑋 ) | 
						
							| 150 |  | ufilb | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝑧  ⊆  𝑋 )  →  ( ¬  𝑧  ∈  𝐹  ↔  ( 𝑋  ∖  𝑧 )  ∈  𝐹 ) ) | 
						
							| 151 | 143 149 150 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  ( 𝐵  ∖  𝐹 )  ∩  Fin ) )  ∧  𝑦  ≠  ∅ )  ∧  𝑧  ∈  𝑦 )  →  ( ¬  𝑧  ∈  𝐹  ↔  ( 𝑋  ∖  𝑧 )  ∈  𝐹 ) ) | 
						
							| 152 | 142 151 | mpbid | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  ( 𝐵  ∖  𝐹 )  ∩  Fin ) )  ∧  𝑦  ≠  ∅ )  ∧  𝑧  ∈  𝑦 )  →  ( 𝑋  ∖  𝑧 )  ∈  𝐹 ) | 
						
							| 153 | 152 | fmpttd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  ( 𝐵  ∖  𝐹 )  ∩  Fin ) )  ∧  𝑦  ≠  ∅ )  →  ( 𝑧  ∈  𝑦  ↦  ( 𝑋  ∖  𝑧 ) ) : 𝑦 ⟶ 𝐹 ) | 
						
							| 154 | 153 | frnd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  ( 𝐵  ∖  𝐹 )  ∩  Fin ) )  ∧  𝑦  ≠  ∅ )  →  ran  ( 𝑧  ∈  𝑦  ↦  ( 𝑋  ∖  𝑧 ) )  ⊆  𝐹 ) | 
						
							| 155 | 132 152 | dmmptd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  ( 𝐵  ∖  𝐹 )  ∩  Fin ) )  ∧  𝑦  ≠  ∅ )  →  dom  ( 𝑧  ∈  𝑦  ↦  ( 𝑋  ∖  𝑧 ) )  =  𝑦 ) | 
						
							| 156 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  ( 𝐵  ∖  𝐹 )  ∩  Fin ) )  ∧  𝑦  ≠  ∅ )  →  𝑦  ≠  ∅ ) | 
						
							| 157 | 155 156 | eqnetrd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  ( 𝐵  ∖  𝐹 )  ∩  Fin ) )  ∧  𝑦  ≠  ∅ )  →  dom  ( 𝑧  ∈  𝑦  ↦  ( 𝑋  ∖  𝑧 ) )  ≠  ∅ ) | 
						
							| 158 |  | dm0rn0 | ⊢ ( dom  ( 𝑧  ∈  𝑦  ↦  ( 𝑋  ∖  𝑧 ) )  =  ∅  ↔  ran  ( 𝑧  ∈  𝑦  ↦  ( 𝑋  ∖  𝑧 ) )  =  ∅ ) | 
						
							| 159 | 158 | necon3bii | ⊢ ( dom  ( 𝑧  ∈  𝑦  ↦  ( 𝑋  ∖  𝑧 ) )  ≠  ∅  ↔  ran  ( 𝑧  ∈  𝑦  ↦  ( 𝑋  ∖  𝑧 ) )  ≠  ∅ ) | 
						
							| 160 | 157 159 | sylib | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  ( 𝐵  ∖  𝐹 )  ∩  Fin ) )  ∧  𝑦  ≠  ∅ )  →  ran  ( 𝑧  ∈  𝑦  ↦  ( 𝑋  ∖  𝑧 ) )  ≠  ∅ ) | 
						
							| 161 |  | elinel2 | ⊢ ( 𝑦  ∈  ( 𝒫  ( 𝐵  ∖  𝐹 )  ∩  Fin )  →  𝑦  ∈  Fin ) | 
						
							| 162 | 161 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  ( 𝐵  ∖  𝐹 )  ∩  Fin ) )  ∧  𝑦  ≠  ∅ )  →  𝑦  ∈  Fin ) | 
						
							| 163 |  | abrexfi | ⊢ ( 𝑦  ∈  Fin  →  { 𝑥  ∣  ∃ 𝑧  ∈  𝑦 𝑥  =  ( 𝑋  ∖  𝑧 ) }  ∈  Fin ) | 
						
							| 164 | 133 163 | eqeltrid | ⊢ ( 𝑦  ∈  Fin  →  ran  ( 𝑧  ∈  𝑦  ↦  ( 𝑋  ∖  𝑧 ) )  ∈  Fin ) | 
						
							| 165 | 162 164 | syl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  ( 𝐵  ∖  𝐹 )  ∩  Fin ) )  ∧  𝑦  ≠  ∅ )  →  ran  ( 𝑧  ∈  𝑦  ↦  ( 𝑋  ∖  𝑧 ) )  ∈  Fin ) | 
						
							| 166 |  | filintn0 | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( ran  ( 𝑧  ∈  𝑦  ↦  ( 𝑋  ∖  𝑧 ) )  ⊆  𝐹  ∧  ran  ( 𝑧  ∈  𝑦  ↦  ( 𝑋  ∖  𝑧 ) )  ≠  ∅  ∧  ran  ( 𝑧  ∈  𝑦  ↦  ( 𝑋  ∖  𝑧 ) )  ∈  Fin ) )  →  ∩  ran  ( 𝑧  ∈  𝑦  ↦  ( 𝑋  ∖  𝑧 ) )  ≠  ∅ ) | 
						
							| 167 | 137 154 160 165 166 | syl13anc | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  ( 𝐵  ∖  𝐹 )  ∩  Fin ) )  ∧  𝑦  ≠  ∅ )  →  ∩  ran  ( 𝑧  ∈  𝑦  ↦  ( 𝑋  ∖  𝑧 ) )  ≠  ∅ ) | 
						
							| 168 | 136 167 | eqnetrd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  ( 𝐵  ∖  𝐹 )  ∩  Fin ) )  ∧  𝑦  ≠  ∅ )  →  ( 𝑋  ∩  ∩  𝑧  ∈  𝑦 ( 𝑋  ∖  𝑧 ) )  ≠  ∅ ) | 
						
							| 169 |  | disj3 | ⊢ ( ( 𝑋  ∩  ∩  𝑧  ∈  𝑦 ( 𝑋  ∖  𝑧 ) )  =  ∅  ↔  𝑋  =  ( 𝑋  ∖  ∩  𝑧  ∈  𝑦 ( 𝑋  ∖  𝑧 ) ) ) | 
						
							| 170 | 169 | necon3bii | ⊢ ( ( 𝑋  ∩  ∩  𝑧  ∈  𝑦 ( 𝑋  ∖  𝑧 ) )  ≠  ∅  ↔  𝑋  ≠  ( 𝑋  ∖  ∩  𝑧  ∈  𝑦 ( 𝑋  ∖  𝑧 ) ) ) | 
						
							| 171 | 168 170 | sylib | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  ( 𝐵  ∖  𝐹 )  ∩  Fin ) )  ∧  𝑦  ≠  ∅ )  →  𝑋  ≠  ( 𝑋  ∖  ∩  𝑧  ∈  𝑦 ( 𝑋  ∖  𝑧 ) ) ) | 
						
							| 172 |  | iundif2 | ⊢ ∪  𝑧  ∈  𝑦 ( 𝑋  ∖  ( 𝑋  ∖  𝑧 ) )  =  ( 𝑋  ∖  ∩  𝑧  ∈  𝑦 ( 𝑋  ∖  𝑧 ) ) | 
						
							| 173 |  | dfss4 | ⊢ ( 𝑧  ⊆  𝑋  ↔  ( 𝑋  ∖  ( 𝑋  ∖  𝑧 ) )  =  𝑧 ) | 
						
							| 174 | 149 173 | sylib | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  ( 𝐵  ∖  𝐹 )  ∩  Fin ) )  ∧  𝑦  ≠  ∅ )  ∧  𝑧  ∈  𝑦 )  →  ( 𝑋  ∖  ( 𝑋  ∖  𝑧 ) )  =  𝑧 ) | 
						
							| 175 | 174 | iuneq2dv | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  ( 𝐵  ∖  𝐹 )  ∩  Fin ) )  ∧  𝑦  ≠  ∅ )  →  ∪  𝑧  ∈  𝑦 ( 𝑋  ∖  ( 𝑋  ∖  𝑧 ) )  =  ∪  𝑧  ∈  𝑦 𝑧 ) | 
						
							| 176 |  | uniiun | ⊢ ∪  𝑦  =  ∪  𝑧  ∈  𝑦 𝑧 | 
						
							| 177 | 175 176 | eqtr4di | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  ( 𝐵  ∖  𝐹 )  ∩  Fin ) )  ∧  𝑦  ≠  ∅ )  →  ∪  𝑧  ∈  𝑦 ( 𝑋  ∖  ( 𝑋  ∖  𝑧 ) )  =  ∪  𝑦 ) | 
						
							| 178 | 172 177 | eqtr3id | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  ( 𝐵  ∖  𝐹 )  ∩  Fin ) )  ∧  𝑦  ≠  ∅ )  →  ( 𝑋  ∖  ∩  𝑧  ∈  𝑦 ( 𝑋  ∖  𝑧 ) )  =  ∪  𝑦 ) | 
						
							| 179 | 171 178 | neeqtrd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  ( 𝐵  ∖  𝐹 )  ∩  Fin ) )  ∧  𝑦  ≠  ∅ )  →  𝑋  ≠  ∪  𝑦 ) | 
						
							| 180 | 15 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  ( 𝐵  ∖  𝐹 )  ∩  Fin ) )  →  𝐹  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 181 |  | filtop | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  𝑋  ∈  𝐹 ) | 
						
							| 182 |  | fileln0 | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝑋  ∈  𝐹 )  →  𝑋  ≠  ∅ ) | 
						
							| 183 | 180 181 182 | syl2anc2 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  ( 𝐵  ∖  𝐹 )  ∩  Fin ) )  →  𝑋  ≠  ∅ ) | 
						
							| 184 | 122 179 183 | pm2.61ne | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  ( 𝐵  ∖  𝐹 )  ∩  Fin ) )  →  𝑋  ≠  ∪  𝑦 ) | 
						
							| 185 | 184 | neneqd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  ( 𝐵  ∖  𝐹 )  ∩  Fin ) )  →  ¬  𝑋  =  ∪  𝑦 ) | 
						
							| 186 | 185 | nrexdv | ⊢ ( 𝜑  →  ¬  ∃ 𝑦  ∈  ( 𝒫  ( 𝐵  ∖  𝐹 )  ∩  Fin ) 𝑋  =  ∪  𝑦 ) | 
						
							| 187 | 118 186 | pm2.65i | ⊢ ¬  𝜑 |