Step |
Hyp |
Ref |
Expression |
1 |
|
algcvga.1 |
⊢ 𝐹 : 𝑆 ⟶ 𝑆 |
2 |
|
algcvga.2 |
⊢ 𝑅 = seq 0 ( ( 𝐹 ∘ 1st ) , ( ℕ0 × { 𝐴 } ) ) |
3 |
|
algcvga.3 |
⊢ 𝐶 : 𝑆 ⟶ ℕ0 |
4 |
|
algcvga.4 |
⊢ ( 𝑧 ∈ 𝑆 → ( ( 𝐶 ‘ ( 𝐹 ‘ 𝑧 ) ) ≠ 0 → ( 𝐶 ‘ ( 𝐹 ‘ 𝑧 ) ) < ( 𝐶 ‘ 𝑧 ) ) ) |
5 |
|
algcvga.5 |
⊢ 𝑁 = ( 𝐶 ‘ 𝐴 ) |
6 |
3
|
ffvelrni |
⊢ ( 𝐴 ∈ 𝑆 → ( 𝐶 ‘ 𝐴 ) ∈ ℕ0 ) |
7 |
5 6
|
eqeltrid |
⊢ ( 𝐴 ∈ 𝑆 → 𝑁 ∈ ℕ0 ) |
8 |
|
nn0z |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) |
9 |
|
eluz1 |
⊢ ( 𝑁 ∈ ℤ → ( 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ↔ ( 𝐾 ∈ ℤ ∧ 𝑁 ≤ 𝐾 ) ) ) |
10 |
|
2fveq3 |
⊢ ( 𝑚 = 𝑁 → ( 𝐶 ‘ ( 𝑅 ‘ 𝑚 ) ) = ( 𝐶 ‘ ( 𝑅 ‘ 𝑁 ) ) ) |
11 |
10
|
eqeq1d |
⊢ ( 𝑚 = 𝑁 → ( ( 𝐶 ‘ ( 𝑅 ‘ 𝑚 ) ) = 0 ↔ ( 𝐶 ‘ ( 𝑅 ‘ 𝑁 ) ) = 0 ) ) |
12 |
11
|
imbi2d |
⊢ ( 𝑚 = 𝑁 → ( ( 𝐴 ∈ 𝑆 → ( 𝐶 ‘ ( 𝑅 ‘ 𝑚 ) ) = 0 ) ↔ ( 𝐴 ∈ 𝑆 → ( 𝐶 ‘ ( 𝑅 ‘ 𝑁 ) ) = 0 ) ) ) |
13 |
|
2fveq3 |
⊢ ( 𝑚 = 𝑘 → ( 𝐶 ‘ ( 𝑅 ‘ 𝑚 ) ) = ( 𝐶 ‘ ( 𝑅 ‘ 𝑘 ) ) ) |
14 |
13
|
eqeq1d |
⊢ ( 𝑚 = 𝑘 → ( ( 𝐶 ‘ ( 𝑅 ‘ 𝑚 ) ) = 0 ↔ ( 𝐶 ‘ ( 𝑅 ‘ 𝑘 ) ) = 0 ) ) |
15 |
14
|
imbi2d |
⊢ ( 𝑚 = 𝑘 → ( ( 𝐴 ∈ 𝑆 → ( 𝐶 ‘ ( 𝑅 ‘ 𝑚 ) ) = 0 ) ↔ ( 𝐴 ∈ 𝑆 → ( 𝐶 ‘ ( 𝑅 ‘ 𝑘 ) ) = 0 ) ) ) |
16 |
|
2fveq3 |
⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( 𝐶 ‘ ( 𝑅 ‘ 𝑚 ) ) = ( 𝐶 ‘ ( 𝑅 ‘ ( 𝑘 + 1 ) ) ) ) |
17 |
16
|
eqeq1d |
⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( ( 𝐶 ‘ ( 𝑅 ‘ 𝑚 ) ) = 0 ↔ ( 𝐶 ‘ ( 𝑅 ‘ ( 𝑘 + 1 ) ) ) = 0 ) ) |
18 |
17
|
imbi2d |
⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( ( 𝐴 ∈ 𝑆 → ( 𝐶 ‘ ( 𝑅 ‘ 𝑚 ) ) = 0 ) ↔ ( 𝐴 ∈ 𝑆 → ( 𝐶 ‘ ( 𝑅 ‘ ( 𝑘 + 1 ) ) ) = 0 ) ) ) |
19 |
|
2fveq3 |
⊢ ( 𝑚 = 𝐾 → ( 𝐶 ‘ ( 𝑅 ‘ 𝑚 ) ) = ( 𝐶 ‘ ( 𝑅 ‘ 𝐾 ) ) ) |
20 |
19
|
eqeq1d |
⊢ ( 𝑚 = 𝐾 → ( ( 𝐶 ‘ ( 𝑅 ‘ 𝑚 ) ) = 0 ↔ ( 𝐶 ‘ ( 𝑅 ‘ 𝐾 ) ) = 0 ) ) |
21 |
20
|
imbi2d |
⊢ ( 𝑚 = 𝐾 → ( ( 𝐴 ∈ 𝑆 → ( 𝐶 ‘ ( 𝑅 ‘ 𝑚 ) ) = 0 ) ↔ ( 𝐴 ∈ 𝑆 → ( 𝐶 ‘ ( 𝑅 ‘ 𝐾 ) ) = 0 ) ) ) |
22 |
1 2 3 4 5
|
algcvg |
⊢ ( 𝐴 ∈ 𝑆 → ( 𝐶 ‘ ( 𝑅 ‘ 𝑁 ) ) = 0 ) |
23 |
22
|
a1i |
⊢ ( 𝑁 ∈ ℤ → ( 𝐴 ∈ 𝑆 → ( 𝐶 ‘ ( 𝑅 ‘ 𝑁 ) ) = 0 ) ) |
24 |
|
nn0ge0 |
⊢ ( 𝑁 ∈ ℕ0 → 0 ≤ 𝑁 ) |
25 |
24
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℤ ) → 0 ≤ 𝑁 ) |
26 |
|
0re |
⊢ 0 ∈ ℝ |
27 |
|
nn0re |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) |
28 |
|
zre |
⊢ ( 𝑘 ∈ ℤ → 𝑘 ∈ ℝ ) |
29 |
|
letr |
⊢ ( ( 0 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑘 ∈ ℝ ) → ( ( 0 ≤ 𝑁 ∧ 𝑁 ≤ 𝑘 ) → 0 ≤ 𝑘 ) ) |
30 |
26 27 28 29
|
mp3an3an |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℤ ) → ( ( 0 ≤ 𝑁 ∧ 𝑁 ≤ 𝑘 ) → 0 ≤ 𝑘 ) ) |
31 |
25 30
|
mpand |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℤ ) → ( 𝑁 ≤ 𝑘 → 0 ≤ 𝑘 ) ) |
32 |
|
elnn0z |
⊢ ( 𝑘 ∈ ℕ0 ↔ ( 𝑘 ∈ ℤ ∧ 0 ≤ 𝑘 ) ) |
33 |
32
|
simplbi2 |
⊢ ( 𝑘 ∈ ℤ → ( 0 ≤ 𝑘 → 𝑘 ∈ ℕ0 ) ) |
34 |
33
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℤ ) → ( 0 ≤ 𝑘 → 𝑘 ∈ ℕ0 ) ) |
35 |
31 34
|
syld |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℤ ) → ( 𝑁 ≤ 𝑘 → 𝑘 ∈ ℕ0 ) ) |
36 |
7 35
|
sylan |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℤ ) → ( 𝑁 ≤ 𝑘 → 𝑘 ∈ ℕ0 ) ) |
37 |
36
|
impr |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ ( 𝑘 ∈ ℤ ∧ 𝑁 ≤ 𝑘 ) ) → 𝑘 ∈ ℕ0 ) |
38 |
37
|
expcom |
⊢ ( ( 𝑘 ∈ ℤ ∧ 𝑁 ≤ 𝑘 ) → ( 𝐴 ∈ 𝑆 → 𝑘 ∈ ℕ0 ) ) |
39 |
38
|
3adant1 |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑁 ≤ 𝑘 ) → ( 𝐴 ∈ 𝑆 → 𝑘 ∈ ℕ0 ) ) |
40 |
39
|
ancld |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑁 ≤ 𝑘 ) → ( 𝐴 ∈ 𝑆 → ( 𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0 ) ) ) |
41 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
42 |
|
0zd |
⊢ ( 𝐴 ∈ 𝑆 → 0 ∈ ℤ ) |
43 |
|
id |
⊢ ( 𝐴 ∈ 𝑆 → 𝐴 ∈ 𝑆 ) |
44 |
1
|
a1i |
⊢ ( 𝐴 ∈ 𝑆 → 𝐹 : 𝑆 ⟶ 𝑆 ) |
45 |
41 2 42 43 44
|
algrf |
⊢ ( 𝐴 ∈ 𝑆 → 𝑅 : ℕ0 ⟶ 𝑆 ) |
46 |
45
|
ffvelrnda |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑅 ‘ 𝑘 ) ∈ 𝑆 ) |
47 |
|
2fveq3 |
⊢ ( 𝑧 = ( 𝑅 ‘ 𝑘 ) → ( 𝐶 ‘ ( 𝐹 ‘ 𝑧 ) ) = ( 𝐶 ‘ ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) ) |
48 |
47
|
neeq1d |
⊢ ( 𝑧 = ( 𝑅 ‘ 𝑘 ) → ( ( 𝐶 ‘ ( 𝐹 ‘ 𝑧 ) ) ≠ 0 ↔ ( 𝐶 ‘ ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) ≠ 0 ) ) |
49 |
|
fveq2 |
⊢ ( 𝑧 = ( 𝑅 ‘ 𝑘 ) → ( 𝐶 ‘ 𝑧 ) = ( 𝐶 ‘ ( 𝑅 ‘ 𝑘 ) ) ) |
50 |
47 49
|
breq12d |
⊢ ( 𝑧 = ( 𝑅 ‘ 𝑘 ) → ( ( 𝐶 ‘ ( 𝐹 ‘ 𝑧 ) ) < ( 𝐶 ‘ 𝑧 ) ↔ ( 𝐶 ‘ ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝐶 ‘ ( 𝑅 ‘ 𝑘 ) ) ) ) |
51 |
48 50
|
imbi12d |
⊢ ( 𝑧 = ( 𝑅 ‘ 𝑘 ) → ( ( ( 𝐶 ‘ ( 𝐹 ‘ 𝑧 ) ) ≠ 0 → ( 𝐶 ‘ ( 𝐹 ‘ 𝑧 ) ) < ( 𝐶 ‘ 𝑧 ) ) ↔ ( ( 𝐶 ‘ ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) ≠ 0 → ( 𝐶 ‘ ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝐶 ‘ ( 𝑅 ‘ 𝑘 ) ) ) ) ) |
52 |
51 4
|
vtoclga |
⊢ ( ( 𝑅 ‘ 𝑘 ) ∈ 𝑆 → ( ( 𝐶 ‘ ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) ≠ 0 → ( 𝐶 ‘ ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝐶 ‘ ( 𝑅 ‘ 𝑘 ) ) ) ) |
53 |
1 3
|
algcvgb |
⊢ ( ( 𝑅 ‘ 𝑘 ) ∈ 𝑆 → ( ( ( 𝐶 ‘ ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) ≠ 0 → ( 𝐶 ‘ ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝐶 ‘ ( 𝑅 ‘ 𝑘 ) ) ) ↔ ( ( ( 𝐶 ‘ ( 𝑅 ‘ 𝑘 ) ) ≠ 0 → ( 𝐶 ‘ ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝐶 ‘ ( 𝑅 ‘ 𝑘 ) ) ) ∧ ( ( 𝐶 ‘ ( 𝑅 ‘ 𝑘 ) ) = 0 → ( 𝐶 ‘ ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) = 0 ) ) ) ) |
54 |
|
simpr |
⊢ ( ( ( ( 𝐶 ‘ ( 𝑅 ‘ 𝑘 ) ) ≠ 0 → ( 𝐶 ‘ ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝐶 ‘ ( 𝑅 ‘ 𝑘 ) ) ) ∧ ( ( 𝐶 ‘ ( 𝑅 ‘ 𝑘 ) ) = 0 → ( 𝐶 ‘ ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) = 0 ) ) → ( ( 𝐶 ‘ ( 𝑅 ‘ 𝑘 ) ) = 0 → ( 𝐶 ‘ ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) = 0 ) ) |
55 |
53 54
|
syl6bi |
⊢ ( ( 𝑅 ‘ 𝑘 ) ∈ 𝑆 → ( ( ( 𝐶 ‘ ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) ≠ 0 → ( 𝐶 ‘ ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝐶 ‘ ( 𝑅 ‘ 𝑘 ) ) ) → ( ( 𝐶 ‘ ( 𝑅 ‘ 𝑘 ) ) = 0 → ( 𝐶 ‘ ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) = 0 ) ) ) |
56 |
52 55
|
mpd |
⊢ ( ( 𝑅 ‘ 𝑘 ) ∈ 𝑆 → ( ( 𝐶 ‘ ( 𝑅 ‘ 𝑘 ) ) = 0 → ( 𝐶 ‘ ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) = 0 ) ) |
57 |
46 56
|
syl |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐶 ‘ ( 𝑅 ‘ 𝑘 ) ) = 0 → ( 𝐶 ‘ ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) = 0 ) ) |
58 |
41 2 42 43 44
|
algrp1 |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑅 ‘ ( 𝑘 + 1 ) ) = ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) |
59 |
58
|
fveqeq2d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐶 ‘ ( 𝑅 ‘ ( 𝑘 + 1 ) ) ) = 0 ↔ ( 𝐶 ‘ ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) = 0 ) ) |
60 |
57 59
|
sylibrd |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐶 ‘ ( 𝑅 ‘ 𝑘 ) ) = 0 → ( 𝐶 ‘ ( 𝑅 ‘ ( 𝑘 + 1 ) ) ) = 0 ) ) |
61 |
40 60
|
syl6 |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑁 ≤ 𝑘 ) → ( 𝐴 ∈ 𝑆 → ( ( 𝐶 ‘ ( 𝑅 ‘ 𝑘 ) ) = 0 → ( 𝐶 ‘ ( 𝑅 ‘ ( 𝑘 + 1 ) ) ) = 0 ) ) ) |
62 |
61
|
a2d |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑁 ≤ 𝑘 ) → ( ( 𝐴 ∈ 𝑆 → ( 𝐶 ‘ ( 𝑅 ‘ 𝑘 ) ) = 0 ) → ( 𝐴 ∈ 𝑆 → ( 𝐶 ‘ ( 𝑅 ‘ ( 𝑘 + 1 ) ) ) = 0 ) ) ) |
63 |
12 15 18 21 23 62
|
uzind |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ≤ 𝐾 ) → ( 𝐴 ∈ 𝑆 → ( 𝐶 ‘ ( 𝑅 ‘ 𝐾 ) ) = 0 ) ) |
64 |
63
|
3expib |
⊢ ( 𝑁 ∈ ℤ → ( ( 𝐾 ∈ ℤ ∧ 𝑁 ≤ 𝐾 ) → ( 𝐴 ∈ 𝑆 → ( 𝐶 ‘ ( 𝑅 ‘ 𝐾 ) ) = 0 ) ) ) |
65 |
9 64
|
sylbid |
⊢ ( 𝑁 ∈ ℤ → ( 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) → ( 𝐴 ∈ 𝑆 → ( 𝐶 ‘ ( 𝑅 ‘ 𝐾 ) ) = 0 ) ) ) |
66 |
8 65
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) → ( 𝐴 ∈ 𝑆 → ( 𝐶 ‘ ( 𝑅 ‘ 𝐾 ) ) = 0 ) ) ) |
67 |
66
|
com3r |
⊢ ( 𝐴 ∈ 𝑆 → ( 𝑁 ∈ ℕ0 → ( 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) → ( 𝐶 ‘ ( 𝑅 ‘ 𝐾 ) ) = 0 ) ) ) |
68 |
7 67
|
mpd |
⊢ ( 𝐴 ∈ 𝑆 → ( 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) → ( 𝐶 ‘ ( 𝑅 ‘ 𝐾 ) ) = 0 ) ) |