| Step |
Hyp |
Ref |
Expression |
| 1 |
|
algcvgb.1 |
⊢ 𝐹 : 𝑆 ⟶ 𝑆 |
| 2 |
|
algcvgb.2 |
⊢ 𝐶 : 𝑆 ⟶ ℕ0 |
| 3 |
2
|
ffvelcdmi |
⊢ ( 𝑋 ∈ 𝑆 → ( 𝐶 ‘ 𝑋 ) ∈ ℕ0 ) |
| 4 |
1
|
ffvelcdmi |
⊢ ( 𝑋 ∈ 𝑆 → ( 𝐹 ‘ 𝑋 ) ∈ 𝑆 ) |
| 5 |
2
|
ffvelcdmi |
⊢ ( ( 𝐹 ‘ 𝑋 ) ∈ 𝑆 → ( 𝐶 ‘ ( 𝐹 ‘ 𝑋 ) ) ∈ ℕ0 ) |
| 6 |
4 5
|
syl |
⊢ ( 𝑋 ∈ 𝑆 → ( 𝐶 ‘ ( 𝐹 ‘ 𝑋 ) ) ∈ ℕ0 ) |
| 7 |
|
algcvgblem |
⊢ ( ( ( 𝐶 ‘ 𝑋 ) ∈ ℕ0 ∧ ( 𝐶 ‘ ( 𝐹 ‘ 𝑋 ) ) ∈ ℕ0 ) → ( ( ( 𝐶 ‘ ( 𝐹 ‘ 𝑋 ) ) ≠ 0 → ( 𝐶 ‘ ( 𝐹 ‘ 𝑋 ) ) < ( 𝐶 ‘ 𝑋 ) ) ↔ ( ( ( 𝐶 ‘ 𝑋 ) ≠ 0 → ( 𝐶 ‘ ( 𝐹 ‘ 𝑋 ) ) < ( 𝐶 ‘ 𝑋 ) ) ∧ ( ( 𝐶 ‘ 𝑋 ) = 0 → ( 𝐶 ‘ ( 𝐹 ‘ 𝑋 ) ) = 0 ) ) ) ) |
| 8 |
3 6 7
|
syl2anc |
⊢ ( 𝑋 ∈ 𝑆 → ( ( ( 𝐶 ‘ ( 𝐹 ‘ 𝑋 ) ) ≠ 0 → ( 𝐶 ‘ ( 𝐹 ‘ 𝑋 ) ) < ( 𝐶 ‘ 𝑋 ) ) ↔ ( ( ( 𝐶 ‘ 𝑋 ) ≠ 0 → ( 𝐶 ‘ ( 𝐹 ‘ 𝑋 ) ) < ( 𝐶 ‘ 𝑋 ) ) ∧ ( ( 𝐶 ‘ 𝑋 ) = 0 → ( 𝐶 ‘ ( 𝐹 ‘ 𝑋 ) ) = 0 ) ) ) ) |