Step |
Hyp |
Ref |
Expression |
1 |
|
imor |
⊢ ( ( 𝑁 ≠ 0 → 𝑁 < 𝑀 ) ↔ ( ¬ 𝑁 ≠ 0 ∨ 𝑁 < 𝑀 ) ) |
2 |
|
0re |
⊢ 0 ∈ ℝ |
3 |
|
nn0re |
⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℝ ) |
4 |
3
|
adantr |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → 𝑀 ∈ ℝ ) |
5 |
|
ltnle |
⊢ ( ( 0 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( 0 < 𝑀 ↔ ¬ 𝑀 ≤ 0 ) ) |
6 |
2 4 5
|
sylancr |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 0 < 𝑀 ↔ ¬ 𝑀 ≤ 0 ) ) |
7 |
|
nn0le0eq0 |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 ≤ 0 ↔ 𝑀 = 0 ) ) |
8 |
7
|
notbid |
⊢ ( 𝑀 ∈ ℕ0 → ( ¬ 𝑀 ≤ 0 ↔ ¬ 𝑀 = 0 ) ) |
9 |
8
|
adantr |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ¬ 𝑀 ≤ 0 ↔ ¬ 𝑀 = 0 ) ) |
10 |
6 9
|
bitrd |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 0 < 𝑀 ↔ ¬ 𝑀 = 0 ) ) |
11 |
|
df-ne |
⊢ ( 𝑀 ≠ 0 ↔ ¬ 𝑀 = 0 ) |
12 |
10 11
|
bitr4di |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 0 < 𝑀 ↔ 𝑀 ≠ 0 ) ) |
13 |
12
|
anbi2d |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ¬ 𝑁 ≠ 0 ∧ 0 < 𝑀 ) ↔ ( ¬ 𝑁 ≠ 0 ∧ 𝑀 ≠ 0 ) ) ) |
14 |
|
nne |
⊢ ( ¬ 𝑁 ≠ 0 ↔ 𝑁 = 0 ) |
15 |
|
breq1 |
⊢ ( 𝑁 = 0 → ( 𝑁 < 𝑀 ↔ 0 < 𝑀 ) ) |
16 |
14 15
|
sylbi |
⊢ ( ¬ 𝑁 ≠ 0 → ( 𝑁 < 𝑀 ↔ 0 < 𝑀 ) ) |
17 |
16
|
biimpar |
⊢ ( ( ¬ 𝑁 ≠ 0 ∧ 0 < 𝑀 ) → 𝑁 < 𝑀 ) |
18 |
13 17
|
syl6bir |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ¬ 𝑁 ≠ 0 ∧ 𝑀 ≠ 0 ) → 𝑁 < 𝑀 ) ) |
19 |
18
|
expd |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ¬ 𝑁 ≠ 0 → ( 𝑀 ≠ 0 → 𝑁 < 𝑀 ) ) ) |
20 |
|
ax-1 |
⊢ ( 𝑁 < 𝑀 → ( 𝑀 ≠ 0 → 𝑁 < 𝑀 ) ) |
21 |
|
jaob |
⊢ ( ( ( ¬ 𝑁 ≠ 0 ∨ 𝑁 < 𝑀 ) → ( 𝑀 ≠ 0 → 𝑁 < 𝑀 ) ) ↔ ( ( ¬ 𝑁 ≠ 0 → ( 𝑀 ≠ 0 → 𝑁 < 𝑀 ) ) ∧ ( 𝑁 < 𝑀 → ( 𝑀 ≠ 0 → 𝑁 < 𝑀 ) ) ) ) |
22 |
19 20 21
|
sylanblrc |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ¬ 𝑁 ≠ 0 ∨ 𝑁 < 𝑀 ) → ( 𝑀 ≠ 0 → 𝑁 < 𝑀 ) ) ) |
23 |
1 22
|
syl5bi |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑁 ≠ 0 → 𝑁 < 𝑀 ) → ( 𝑀 ≠ 0 → 𝑁 < 𝑀 ) ) ) |
24 |
|
nn0ge0 |
⊢ ( 𝑁 ∈ ℕ0 → 0 ≤ 𝑁 ) |
25 |
24
|
adantl |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → 0 ≤ 𝑁 ) |
26 |
|
nn0re |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) |
27 |
|
lelttr |
⊢ ( ( 0 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( ( 0 ≤ 𝑁 ∧ 𝑁 < 𝑀 ) → 0 < 𝑀 ) ) |
28 |
2 27
|
mp3an1 |
⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( ( 0 ≤ 𝑁 ∧ 𝑁 < 𝑀 ) → 0 < 𝑀 ) ) |
29 |
26 3 28
|
syl2anr |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( 0 ≤ 𝑁 ∧ 𝑁 < 𝑀 ) → 0 < 𝑀 ) ) |
30 |
25 29
|
mpand |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 < 𝑀 → 0 < 𝑀 ) ) |
31 |
30 12
|
sylibd |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 < 𝑀 → 𝑀 ≠ 0 ) ) |
32 |
31
|
imim2d |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑁 ≠ 0 → 𝑁 < 𝑀 ) → ( 𝑁 ≠ 0 → 𝑀 ≠ 0 ) ) ) |
33 |
23 32
|
jcad |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑁 ≠ 0 → 𝑁 < 𝑀 ) → ( ( 𝑀 ≠ 0 → 𝑁 < 𝑀 ) ∧ ( 𝑁 ≠ 0 → 𝑀 ≠ 0 ) ) ) ) |
34 |
|
pm3.34 |
⊢ ( ( ( 𝑀 ≠ 0 → 𝑁 < 𝑀 ) ∧ ( 𝑁 ≠ 0 → 𝑀 ≠ 0 ) ) → ( 𝑁 ≠ 0 → 𝑁 < 𝑀 ) ) |
35 |
33 34
|
impbid1 |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑁 ≠ 0 → 𝑁 < 𝑀 ) ↔ ( ( 𝑀 ≠ 0 → 𝑁 < 𝑀 ) ∧ ( 𝑁 ≠ 0 → 𝑀 ≠ 0 ) ) ) ) |
36 |
|
con34b |
⊢ ( ( 𝑀 = 0 → 𝑁 = 0 ) ↔ ( ¬ 𝑁 = 0 → ¬ 𝑀 = 0 ) ) |
37 |
|
df-ne |
⊢ ( 𝑁 ≠ 0 ↔ ¬ 𝑁 = 0 ) |
38 |
37 11
|
imbi12i |
⊢ ( ( 𝑁 ≠ 0 → 𝑀 ≠ 0 ) ↔ ( ¬ 𝑁 = 0 → ¬ 𝑀 = 0 ) ) |
39 |
36 38
|
bitr4i |
⊢ ( ( 𝑀 = 0 → 𝑁 = 0 ) ↔ ( 𝑁 ≠ 0 → 𝑀 ≠ 0 ) ) |
40 |
39
|
anbi2i |
⊢ ( ( ( 𝑀 ≠ 0 → 𝑁 < 𝑀 ) ∧ ( 𝑀 = 0 → 𝑁 = 0 ) ) ↔ ( ( 𝑀 ≠ 0 → 𝑁 < 𝑀 ) ∧ ( 𝑁 ≠ 0 → 𝑀 ≠ 0 ) ) ) |
41 |
35 40
|
bitr4di |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑁 ≠ 0 → 𝑁 < 𝑀 ) ↔ ( ( 𝑀 ≠ 0 → 𝑁 < 𝑀 ) ∧ ( 𝑀 = 0 → 𝑁 = 0 ) ) ) ) |