Step |
Hyp |
Ref |
Expression |
1 |
|
algcvga.1 |
⊢ 𝐹 : 𝑆 ⟶ 𝑆 |
2 |
|
algcvga.2 |
⊢ 𝑅 = seq 0 ( ( 𝐹 ∘ 1st ) , ( ℕ0 × { 𝐴 } ) ) |
3 |
|
algcvga.3 |
⊢ 𝐶 : 𝑆 ⟶ ℕ0 |
4 |
|
algcvga.4 |
⊢ ( 𝑧 ∈ 𝑆 → ( ( 𝐶 ‘ ( 𝐹 ‘ 𝑧 ) ) ≠ 0 → ( 𝐶 ‘ ( 𝐹 ‘ 𝑧 ) ) < ( 𝐶 ‘ 𝑧 ) ) ) |
5 |
|
algcvga.5 |
⊢ 𝑁 = ( 𝐶 ‘ 𝐴 ) |
6 |
|
algfx.6 |
⊢ ( 𝑧 ∈ 𝑆 → ( ( 𝐶 ‘ 𝑧 ) = 0 → ( 𝐹 ‘ 𝑧 ) = 𝑧 ) ) |
7 |
3
|
ffvelrni |
⊢ ( 𝐴 ∈ 𝑆 → ( 𝐶 ‘ 𝐴 ) ∈ ℕ0 ) |
8 |
5 7
|
eqeltrid |
⊢ ( 𝐴 ∈ 𝑆 → 𝑁 ∈ ℕ0 ) |
9 |
8
|
nn0zd |
⊢ ( 𝐴 ∈ 𝑆 → 𝑁 ∈ ℤ ) |
10 |
|
uzval |
⊢ ( 𝑁 ∈ ℤ → ( ℤ≥ ‘ 𝑁 ) = { 𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧 } ) |
11 |
10
|
eleq2d |
⊢ ( 𝑁 ∈ ℤ → ( 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ↔ 𝐾 ∈ { 𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧 } ) ) |
12 |
11
|
pm5.32i |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) ↔ ( 𝑁 ∈ ℤ ∧ 𝐾 ∈ { 𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧 } ) ) |
13 |
|
fveqeq2 |
⊢ ( 𝑚 = 𝑁 → ( ( 𝑅 ‘ 𝑚 ) = ( 𝑅 ‘ 𝑁 ) ↔ ( 𝑅 ‘ 𝑁 ) = ( 𝑅 ‘ 𝑁 ) ) ) |
14 |
13
|
imbi2d |
⊢ ( 𝑚 = 𝑁 → ( ( 𝐴 ∈ 𝑆 → ( 𝑅 ‘ 𝑚 ) = ( 𝑅 ‘ 𝑁 ) ) ↔ ( 𝐴 ∈ 𝑆 → ( 𝑅 ‘ 𝑁 ) = ( 𝑅 ‘ 𝑁 ) ) ) ) |
15 |
|
fveqeq2 |
⊢ ( 𝑚 = 𝑘 → ( ( 𝑅 ‘ 𝑚 ) = ( 𝑅 ‘ 𝑁 ) ↔ ( 𝑅 ‘ 𝑘 ) = ( 𝑅 ‘ 𝑁 ) ) ) |
16 |
15
|
imbi2d |
⊢ ( 𝑚 = 𝑘 → ( ( 𝐴 ∈ 𝑆 → ( 𝑅 ‘ 𝑚 ) = ( 𝑅 ‘ 𝑁 ) ) ↔ ( 𝐴 ∈ 𝑆 → ( 𝑅 ‘ 𝑘 ) = ( 𝑅 ‘ 𝑁 ) ) ) ) |
17 |
|
fveqeq2 |
⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( ( 𝑅 ‘ 𝑚 ) = ( 𝑅 ‘ 𝑁 ) ↔ ( 𝑅 ‘ ( 𝑘 + 1 ) ) = ( 𝑅 ‘ 𝑁 ) ) ) |
18 |
17
|
imbi2d |
⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( ( 𝐴 ∈ 𝑆 → ( 𝑅 ‘ 𝑚 ) = ( 𝑅 ‘ 𝑁 ) ) ↔ ( 𝐴 ∈ 𝑆 → ( 𝑅 ‘ ( 𝑘 + 1 ) ) = ( 𝑅 ‘ 𝑁 ) ) ) ) |
19 |
|
fveqeq2 |
⊢ ( 𝑚 = 𝐾 → ( ( 𝑅 ‘ 𝑚 ) = ( 𝑅 ‘ 𝑁 ) ↔ ( 𝑅 ‘ 𝐾 ) = ( 𝑅 ‘ 𝑁 ) ) ) |
20 |
19
|
imbi2d |
⊢ ( 𝑚 = 𝐾 → ( ( 𝐴 ∈ 𝑆 → ( 𝑅 ‘ 𝑚 ) = ( 𝑅 ‘ 𝑁 ) ) ↔ ( 𝐴 ∈ 𝑆 → ( 𝑅 ‘ 𝐾 ) = ( 𝑅 ‘ 𝑁 ) ) ) ) |
21 |
|
eqidd |
⊢ ( 𝐴 ∈ 𝑆 → ( 𝑅 ‘ 𝑁 ) = ( 𝑅 ‘ 𝑁 ) ) |
22 |
21
|
a1i |
⊢ ( 𝑁 ∈ ℤ → ( 𝐴 ∈ 𝑆 → ( 𝑅 ‘ 𝑁 ) = ( 𝑅 ‘ 𝑁 ) ) ) |
23 |
10
|
eleq2d |
⊢ ( 𝑁 ∈ ℤ → ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ↔ 𝑘 ∈ { 𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧 } ) ) |
24 |
23
|
pm5.32i |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) ↔ ( 𝑁 ∈ ℤ ∧ 𝑘 ∈ { 𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧 } ) ) |
25 |
|
eluznn0 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑘 ∈ ℕ0 ) |
26 |
8 25
|
sylan |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑘 ∈ ℕ0 ) |
27 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
28 |
|
0zd |
⊢ ( 𝐴 ∈ 𝑆 → 0 ∈ ℤ ) |
29 |
|
id |
⊢ ( 𝐴 ∈ 𝑆 → 𝐴 ∈ 𝑆 ) |
30 |
1
|
a1i |
⊢ ( 𝐴 ∈ 𝑆 → 𝐹 : 𝑆 ⟶ 𝑆 ) |
31 |
27 2 28 29 30
|
algrp1 |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑅 ‘ ( 𝑘 + 1 ) ) = ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) |
32 |
26 31
|
syldan |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑅 ‘ ( 𝑘 + 1 ) ) = ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) |
33 |
27 2 28 29 30
|
algrf |
⊢ ( 𝐴 ∈ 𝑆 → 𝑅 : ℕ0 ⟶ 𝑆 ) |
34 |
33
|
ffvelrnda |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑅 ‘ 𝑘 ) ∈ 𝑆 ) |
35 |
26 34
|
syldan |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑅 ‘ 𝑘 ) ∈ 𝑆 ) |
36 |
1 2 3 4 5
|
algcvga |
⊢ ( 𝐴 ∈ 𝑆 → ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) → ( 𝐶 ‘ ( 𝑅 ‘ 𝑘 ) ) = 0 ) ) |
37 |
36
|
imp |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐶 ‘ ( 𝑅 ‘ 𝑘 ) ) = 0 ) |
38 |
|
fveqeq2 |
⊢ ( 𝑧 = ( 𝑅 ‘ 𝑘 ) → ( ( 𝐶 ‘ 𝑧 ) = 0 ↔ ( 𝐶 ‘ ( 𝑅 ‘ 𝑘 ) ) = 0 ) ) |
39 |
|
fveq2 |
⊢ ( 𝑧 = ( 𝑅 ‘ 𝑘 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) |
40 |
|
id |
⊢ ( 𝑧 = ( 𝑅 ‘ 𝑘 ) → 𝑧 = ( 𝑅 ‘ 𝑘 ) ) |
41 |
39 40
|
eqeq12d |
⊢ ( 𝑧 = ( 𝑅 ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑧 ) = 𝑧 ↔ ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) = ( 𝑅 ‘ 𝑘 ) ) ) |
42 |
38 41
|
imbi12d |
⊢ ( 𝑧 = ( 𝑅 ‘ 𝑘 ) → ( ( ( 𝐶 ‘ 𝑧 ) = 0 → ( 𝐹 ‘ 𝑧 ) = 𝑧 ) ↔ ( ( 𝐶 ‘ ( 𝑅 ‘ 𝑘 ) ) = 0 → ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) = ( 𝑅 ‘ 𝑘 ) ) ) ) |
43 |
42 6
|
vtoclga |
⊢ ( ( 𝑅 ‘ 𝑘 ) ∈ 𝑆 → ( ( 𝐶 ‘ ( 𝑅 ‘ 𝑘 ) ) = 0 → ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) = ( 𝑅 ‘ 𝑘 ) ) ) |
44 |
35 37 43
|
sylc |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) = ( 𝑅 ‘ 𝑘 ) ) |
45 |
32 44
|
eqtrd |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑅 ‘ ( 𝑘 + 1 ) ) = ( 𝑅 ‘ 𝑘 ) ) |
46 |
45
|
eqeq1d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑅 ‘ ( 𝑘 + 1 ) ) = ( 𝑅 ‘ 𝑁 ) ↔ ( 𝑅 ‘ 𝑘 ) = ( 𝑅 ‘ 𝑁 ) ) ) |
47 |
46
|
biimprd |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑅 ‘ 𝑘 ) = ( 𝑅 ‘ 𝑁 ) → ( 𝑅 ‘ ( 𝑘 + 1 ) ) = ( 𝑅 ‘ 𝑁 ) ) ) |
48 |
47
|
expcom |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) → ( 𝐴 ∈ 𝑆 → ( ( 𝑅 ‘ 𝑘 ) = ( 𝑅 ‘ 𝑁 ) → ( 𝑅 ‘ ( 𝑘 + 1 ) ) = ( 𝑅 ‘ 𝑁 ) ) ) ) |
49 |
48
|
adantl |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐴 ∈ 𝑆 → ( ( 𝑅 ‘ 𝑘 ) = ( 𝑅 ‘ 𝑁 ) → ( 𝑅 ‘ ( 𝑘 + 1 ) ) = ( 𝑅 ‘ 𝑁 ) ) ) ) |
50 |
24 49
|
sylbir |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑘 ∈ { 𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧 } ) → ( 𝐴 ∈ 𝑆 → ( ( 𝑅 ‘ 𝑘 ) = ( 𝑅 ‘ 𝑁 ) → ( 𝑅 ‘ ( 𝑘 + 1 ) ) = ( 𝑅 ‘ 𝑁 ) ) ) ) |
51 |
50
|
a2d |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑘 ∈ { 𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧 } ) → ( ( 𝐴 ∈ 𝑆 → ( 𝑅 ‘ 𝑘 ) = ( 𝑅 ‘ 𝑁 ) ) → ( 𝐴 ∈ 𝑆 → ( 𝑅 ‘ ( 𝑘 + 1 ) ) = ( 𝑅 ‘ 𝑁 ) ) ) ) |
52 |
14 16 18 20 22 51
|
uzind3 |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐾 ∈ { 𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧 } ) → ( 𝐴 ∈ 𝑆 → ( 𝑅 ‘ 𝐾 ) = ( 𝑅 ‘ 𝑁 ) ) ) |
53 |
12 52
|
sylbi |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐴 ∈ 𝑆 → ( 𝑅 ‘ 𝐾 ) = ( 𝑅 ‘ 𝑁 ) ) ) |
54 |
53
|
ex |
⊢ ( 𝑁 ∈ ℤ → ( 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) → ( 𝐴 ∈ 𝑆 → ( 𝑅 ‘ 𝐾 ) = ( 𝑅 ‘ 𝑁 ) ) ) ) |
55 |
54
|
com3r |
⊢ ( 𝐴 ∈ 𝑆 → ( 𝑁 ∈ ℤ → ( 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) → ( 𝑅 ‘ 𝐾 ) = ( 𝑅 ‘ 𝑁 ) ) ) ) |
56 |
9 55
|
mpd |
⊢ ( 𝐴 ∈ 𝑆 → ( 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) → ( 𝑅 ‘ 𝐾 ) = ( 𝑅 ‘ 𝑁 ) ) ) |