| Step |
Hyp |
Ref |
Expression |
| 1 |
|
alginv.1 |
⊢ 𝑅 = seq 0 ( ( 𝐹 ∘ 1st ) , ( ℕ0 × { 𝐴 } ) ) |
| 2 |
|
alginv.2 |
⊢ 𝐹 : 𝑆 ⟶ 𝑆 |
| 3 |
|
alginv.3 |
⊢ ( 𝑥 ∈ 𝑆 → ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐼 ‘ 𝑥 ) ) |
| 4 |
|
2fveq3 |
⊢ ( 𝑧 = 0 → ( 𝐼 ‘ ( 𝑅 ‘ 𝑧 ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) ) |
| 5 |
4
|
eqeq1d |
⊢ ( 𝑧 = 0 → ( ( 𝐼 ‘ ( 𝑅 ‘ 𝑧 ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) ↔ ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) ) ) |
| 6 |
5
|
imbi2d |
⊢ ( 𝑧 = 0 → ( ( 𝐴 ∈ 𝑆 → ( 𝐼 ‘ ( 𝑅 ‘ 𝑧 ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) ) ↔ ( 𝐴 ∈ 𝑆 → ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) ) ) ) |
| 7 |
|
2fveq3 |
⊢ ( 𝑧 = 𝑘 → ( 𝐼 ‘ ( 𝑅 ‘ 𝑧 ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 𝑘 ) ) ) |
| 8 |
7
|
eqeq1d |
⊢ ( 𝑧 = 𝑘 → ( ( 𝐼 ‘ ( 𝑅 ‘ 𝑧 ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) ↔ ( 𝐼 ‘ ( 𝑅 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) ) ) |
| 9 |
8
|
imbi2d |
⊢ ( 𝑧 = 𝑘 → ( ( 𝐴 ∈ 𝑆 → ( 𝐼 ‘ ( 𝑅 ‘ 𝑧 ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) ) ↔ ( 𝐴 ∈ 𝑆 → ( 𝐼 ‘ ( 𝑅 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) ) ) ) |
| 10 |
|
2fveq3 |
⊢ ( 𝑧 = ( 𝑘 + 1 ) → ( 𝐼 ‘ ( 𝑅 ‘ 𝑧 ) ) = ( 𝐼 ‘ ( 𝑅 ‘ ( 𝑘 + 1 ) ) ) ) |
| 11 |
10
|
eqeq1d |
⊢ ( 𝑧 = ( 𝑘 + 1 ) → ( ( 𝐼 ‘ ( 𝑅 ‘ 𝑧 ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) ↔ ( 𝐼 ‘ ( 𝑅 ‘ ( 𝑘 + 1 ) ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) ) ) |
| 12 |
11
|
imbi2d |
⊢ ( 𝑧 = ( 𝑘 + 1 ) → ( ( 𝐴 ∈ 𝑆 → ( 𝐼 ‘ ( 𝑅 ‘ 𝑧 ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) ) ↔ ( 𝐴 ∈ 𝑆 → ( 𝐼 ‘ ( 𝑅 ‘ ( 𝑘 + 1 ) ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) ) ) ) |
| 13 |
|
2fveq3 |
⊢ ( 𝑧 = 𝐾 → ( 𝐼 ‘ ( 𝑅 ‘ 𝑧 ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 𝐾 ) ) ) |
| 14 |
13
|
eqeq1d |
⊢ ( 𝑧 = 𝐾 → ( ( 𝐼 ‘ ( 𝑅 ‘ 𝑧 ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) ↔ ( 𝐼 ‘ ( 𝑅 ‘ 𝐾 ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) ) ) |
| 15 |
14
|
imbi2d |
⊢ ( 𝑧 = 𝐾 → ( ( 𝐴 ∈ 𝑆 → ( 𝐼 ‘ ( 𝑅 ‘ 𝑧 ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) ) ↔ ( 𝐴 ∈ 𝑆 → ( 𝐼 ‘ ( 𝑅 ‘ 𝐾 ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) ) ) ) |
| 16 |
|
eqidd |
⊢ ( 𝐴 ∈ 𝑆 → ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) ) |
| 17 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 18 |
|
0zd |
⊢ ( 𝐴 ∈ 𝑆 → 0 ∈ ℤ ) |
| 19 |
|
id |
⊢ ( 𝐴 ∈ 𝑆 → 𝐴 ∈ 𝑆 ) |
| 20 |
2
|
a1i |
⊢ ( 𝐴 ∈ 𝑆 → 𝐹 : 𝑆 ⟶ 𝑆 ) |
| 21 |
17 1 18 19 20
|
algrp1 |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑅 ‘ ( 𝑘 + 1 ) ) = ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) |
| 22 |
21
|
fveq2d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐼 ‘ ( 𝑅 ‘ ( 𝑘 + 1 ) ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) ) |
| 23 |
17 1 18 19 20
|
algrf |
⊢ ( 𝐴 ∈ 𝑆 → 𝑅 : ℕ0 ⟶ 𝑆 ) |
| 24 |
23
|
ffvelcdmda |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑅 ‘ 𝑘 ) ∈ 𝑆 ) |
| 25 |
|
2fveq3 |
⊢ ( 𝑥 = ( 𝑅 ‘ 𝑘 ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) ) |
| 26 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑅 ‘ 𝑘 ) → ( 𝐼 ‘ 𝑥 ) = ( 𝐼 ‘ ( 𝑅 ‘ 𝑘 ) ) ) |
| 27 |
25 26
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑅 ‘ 𝑘 ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐼 ‘ 𝑥 ) ↔ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 𝑘 ) ) ) ) |
| 28 |
27 3
|
vtoclga |
⊢ ( ( 𝑅 ‘ 𝑘 ) ∈ 𝑆 → ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 𝑘 ) ) ) |
| 29 |
24 28
|
syl |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 𝑘 ) ) ) |
| 30 |
22 29
|
eqtrd |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐼 ‘ ( 𝑅 ‘ ( 𝑘 + 1 ) ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 𝑘 ) ) ) |
| 31 |
30
|
eqeq1d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐼 ‘ ( 𝑅 ‘ ( 𝑘 + 1 ) ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) ↔ ( 𝐼 ‘ ( 𝑅 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) ) ) |
| 32 |
31
|
biimprd |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐼 ‘ ( 𝑅 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) → ( 𝐼 ‘ ( 𝑅 ‘ ( 𝑘 + 1 ) ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) ) ) |
| 33 |
32
|
expcom |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝐴 ∈ 𝑆 → ( ( 𝐼 ‘ ( 𝑅 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) → ( 𝐼 ‘ ( 𝑅 ‘ ( 𝑘 + 1 ) ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) ) ) ) |
| 34 |
33
|
a2d |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝐴 ∈ 𝑆 → ( 𝐼 ‘ ( 𝑅 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) ) → ( 𝐴 ∈ 𝑆 → ( 𝐼 ‘ ( 𝑅 ‘ ( 𝑘 + 1 ) ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) ) ) ) |
| 35 |
6 9 12 15 16 34
|
nn0ind |
⊢ ( 𝐾 ∈ ℕ0 → ( 𝐴 ∈ 𝑆 → ( 𝐼 ‘ ( 𝑅 ‘ 𝐾 ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) ) ) |
| 36 |
35
|
impcom |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐾 ∈ ℕ0 ) → ( 𝐼 ‘ ( 𝑅 ‘ 𝐾 ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) ) |