Step |
Hyp |
Ref |
Expression |
1 |
|
algrf.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
algrf.2 |
⊢ 𝑅 = seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) |
3 |
|
algrf.3 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
4 |
|
algrf.4 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) |
5 |
2
|
fveq1i |
⊢ ( 𝑅 ‘ 𝑀 ) = ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ 𝑀 ) |
6 |
|
seq1 |
⊢ ( 𝑀 ∈ ℤ → ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ 𝑀 ) = ( ( 𝑍 × { 𝐴 } ) ‘ 𝑀 ) ) |
7 |
3 6
|
syl |
⊢ ( 𝜑 → ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ 𝑀 ) = ( ( 𝑍 × { 𝐴 } ) ‘ 𝑀 ) ) |
8 |
|
uzid |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
9 |
3 8
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
10 |
9 1
|
eleqtrrdi |
⊢ ( 𝜑 → 𝑀 ∈ 𝑍 ) |
11 |
|
fvconst2g |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑀 ∈ 𝑍 ) → ( ( 𝑍 × { 𝐴 } ) ‘ 𝑀 ) = 𝐴 ) |
12 |
4 10 11
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑍 × { 𝐴 } ) ‘ 𝑀 ) = 𝐴 ) |
13 |
7 12
|
eqtrd |
⊢ ( 𝜑 → ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ 𝑀 ) = 𝐴 ) |
14 |
5 13
|
eqtrid |
⊢ ( 𝜑 → ( 𝑅 ‘ 𝑀 ) = 𝐴 ) |