Step |
Hyp |
Ref |
Expression |
1 |
|
algrf.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
algrf.2 |
⊢ 𝑅 = seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) |
3 |
|
algrf.3 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
4 |
|
algrf.4 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) |
5 |
|
algrf.5 |
⊢ ( 𝜑 → 𝐹 : 𝑆 ⟶ 𝑆 ) |
6 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ 𝑍 ) → 𝐾 ∈ 𝑍 ) |
7 |
6 1
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ 𝑍 ) → 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
8 |
|
seqp1 |
⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) → ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ ( 𝐾 + 1 ) ) = ( ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ 𝐾 ) ( 𝐹 ∘ 1st ) ( ( 𝑍 × { 𝐴 } ) ‘ ( 𝐾 + 1 ) ) ) ) |
9 |
7 8
|
syl |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ 𝑍 ) → ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ ( 𝐾 + 1 ) ) = ( ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ 𝐾 ) ( 𝐹 ∘ 1st ) ( ( 𝑍 × { 𝐴 } ) ‘ ( 𝐾 + 1 ) ) ) ) |
10 |
2
|
fveq1i |
⊢ ( 𝑅 ‘ ( 𝐾 + 1 ) ) = ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ ( 𝐾 + 1 ) ) |
11 |
2
|
fveq1i |
⊢ ( 𝑅 ‘ 𝐾 ) = ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ 𝐾 ) |
12 |
11
|
fveq2i |
⊢ ( 𝐹 ‘ ( 𝑅 ‘ 𝐾 ) ) = ( 𝐹 ‘ ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ 𝐾 ) ) |
13 |
|
fvex |
⊢ ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ 𝐾 ) ∈ V |
14 |
|
fvex |
⊢ ( ( 𝑍 × { 𝐴 } ) ‘ ( 𝐾 + 1 ) ) ∈ V |
15 |
13 14
|
opco1i |
⊢ ( ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ 𝐾 ) ( 𝐹 ∘ 1st ) ( ( 𝑍 × { 𝐴 } ) ‘ ( 𝐾 + 1 ) ) ) = ( 𝐹 ‘ ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ 𝐾 ) ) |
16 |
12 15
|
eqtr4i |
⊢ ( 𝐹 ‘ ( 𝑅 ‘ 𝐾 ) ) = ( ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ 𝐾 ) ( 𝐹 ∘ 1st ) ( ( 𝑍 × { 𝐴 } ) ‘ ( 𝐾 + 1 ) ) ) |
17 |
9 10 16
|
3eqtr4g |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ 𝑍 ) → ( 𝑅 ‘ ( 𝐾 + 1 ) ) = ( 𝐹 ‘ ( 𝑅 ‘ 𝐾 ) ) ) |