Metamath Proof Explorer


Theorem alimi

Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 5-Jan-1993)

Ref Expression
Hypothesis alimi.1 ( 𝜑𝜓 )
Assertion alimi ( ∀ 𝑥 𝜑 → ∀ 𝑥 𝜓 )

Proof

Step Hyp Ref Expression
1 alimi.1 ( 𝜑𝜓 )
2 alim ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ∀ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) )
3 2 1 mpg ( ∀ 𝑥 𝜑 → ∀ 𝑥 𝜓 )