Metamath Proof Explorer


Theorem alinexa

Description: A transformation of quantifiers and logical connectives. (Contributed by NM, 19-Aug-1993)

Ref Expression
Assertion alinexa ( ∀ 𝑥 ( 𝜑 → ¬ 𝜓 ) ↔ ¬ ∃ 𝑥 ( 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 imnang ( ∀ 𝑥 ( 𝜑 → ¬ 𝜓 ) ↔ ∀ 𝑥 ¬ ( 𝜑𝜓 ) )
2 alnex ( ∀ 𝑥 ¬ ( 𝜑𝜓 ) ↔ ¬ ∃ 𝑥 ( 𝜑𝜓 ) )
3 1 2 bitri ( ∀ 𝑥 ( 𝜑 → ¬ 𝜓 ) ↔ ¬ ∃ 𝑥 ( 𝜑𝜓 ) )