Description: A transformation of quantifiers and logical connectives. (Contributed by NM, 19-Aug-1993)
Ref | Expression | ||
---|---|---|---|
Assertion | alinexa | ⊢ ( ∀ 𝑥 ( 𝜑 → ¬ 𝜓 ) ↔ ¬ ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imnang | ⊢ ( ∀ 𝑥 ( 𝜑 → ¬ 𝜓 ) ↔ ∀ 𝑥 ¬ ( 𝜑 ∧ 𝜓 ) ) | |
2 | alnex | ⊢ ( ∀ 𝑥 ¬ ( 𝜑 ∧ 𝜓 ) ↔ ¬ ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) | |
3 | 1 2 | bitri | ⊢ ( ∀ 𝑥 ( 𝜑 → ¬ 𝜓 ) ↔ ¬ ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) |