Step |
Hyp |
Ref |
Expression |
1 |
|
allbutfi.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
allbutfi.a |
⊢ 𝐴 = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐵 |
3 |
2
|
eleq2i |
⊢ ( 𝑋 ∈ 𝐴 ↔ 𝑋 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐵 ) |
4 |
3
|
biimpi |
⊢ ( 𝑋 ∈ 𝐴 → 𝑋 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐵 ) |
5 |
|
eliun |
⊢ ( 𝑋 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐵 ↔ ∃ 𝑛 ∈ 𝑍 𝑋 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐵 ) |
6 |
4 5
|
sylib |
⊢ ( 𝑋 ∈ 𝐴 → ∃ 𝑛 ∈ 𝑍 𝑋 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐵 ) |
7 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑋 |
8 |
|
nfiu1 |
⊢ Ⅎ 𝑛 ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐵 |
9 |
2 8
|
nfcxfr |
⊢ Ⅎ 𝑛 𝐴 |
10 |
7 9
|
nfel |
⊢ Ⅎ 𝑛 𝑋 ∈ 𝐴 |
11 |
|
eliin |
⊢ ( 𝑋 ∈ 𝐴 → ( 𝑋 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐵 ↔ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 ) ) |
12 |
11
|
biimpd |
⊢ ( 𝑋 ∈ 𝐴 → ( 𝑋 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐵 → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 ) ) |
13 |
12
|
a1d |
⊢ ( 𝑋 ∈ 𝐴 → ( 𝑛 ∈ 𝑍 → ( 𝑋 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐵 → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 ) ) ) |
14 |
10 13
|
reximdai |
⊢ ( 𝑋 ∈ 𝐴 → ( ∃ 𝑛 ∈ 𝑍 𝑋 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐵 → ∃ 𝑛 ∈ 𝑍 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 ) ) |
15 |
6 14
|
mpd |
⊢ ( 𝑋 ∈ 𝐴 → ∃ 𝑛 ∈ 𝑍 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 ) |
16 |
|
simpr |
⊢ ( ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 ) → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 ) |
17 |
1
|
eleq2i |
⊢ ( 𝑛 ∈ 𝑍 ↔ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
18 |
17
|
biimpi |
⊢ ( 𝑛 ∈ 𝑍 → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
19 |
|
eluzelz |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑛 ∈ ℤ ) |
20 |
|
uzid |
⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ( ℤ≥ ‘ 𝑛 ) ) |
21 |
18 19 20
|
3syl |
⊢ ( 𝑛 ∈ 𝑍 → 𝑛 ∈ ( ℤ≥ ‘ 𝑛 ) ) |
22 |
21
|
ne0d |
⊢ ( 𝑛 ∈ 𝑍 → ( ℤ≥ ‘ 𝑛 ) ≠ ∅ ) |
23 |
|
eliin2 |
⊢ ( ( ℤ≥ ‘ 𝑛 ) ≠ ∅ → ( 𝑋 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐵 ↔ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 ) ) |
24 |
22 23
|
syl |
⊢ ( 𝑛 ∈ 𝑍 → ( 𝑋 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐵 ↔ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 ) ) |
25 |
24
|
adantr |
⊢ ( ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 ) → ( 𝑋 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐵 ↔ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 ) ) |
26 |
16 25
|
mpbird |
⊢ ( ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 ) → 𝑋 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐵 ) |
27 |
26
|
ex |
⊢ ( 𝑛 ∈ 𝑍 → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 → 𝑋 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐵 ) ) |
28 |
27
|
reximia |
⊢ ( ∃ 𝑛 ∈ 𝑍 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 → ∃ 𝑛 ∈ 𝑍 𝑋 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐵 ) |
29 |
28 5
|
sylibr |
⊢ ( ∃ 𝑛 ∈ 𝑍 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 → 𝑋 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐵 ) |
30 |
29 2
|
eleqtrrdi |
⊢ ( ∃ 𝑛 ∈ 𝑍 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐴 ) |
31 |
15 30
|
impbii |
⊢ ( 𝑋 ∈ 𝐴 ↔ ∃ 𝑛 ∈ 𝑍 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 ) |