Step |
Hyp |
Ref |
Expression |
1 |
|
allbutfifvre.1 |
⊢ Ⅎ 𝑚 𝜑 |
2 |
|
allbutfifvre.2 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
3 |
|
allbutfifvre.3 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑚 ) : dom ( 𝐹 ‘ 𝑚 ) ⟶ ℝ ) |
4 |
|
allbutfifvre.4 |
⊢ 𝐷 = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) |
5 |
|
allbutfifvre.5 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) |
6 |
5 4
|
eleqtrdi |
⊢ ( 𝜑 → 𝑋 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) |
7 |
|
eqid |
⊢ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) |
8 |
2 7
|
allbutfi |
⊢ ( 𝑋 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ↔ ∃ 𝑛 ∈ 𝑍 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ dom ( 𝐹 ‘ 𝑚 ) ) |
9 |
6 8
|
sylib |
⊢ ( 𝜑 → ∃ 𝑛 ∈ 𝑍 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ dom ( 𝐹 ‘ 𝑚 ) ) |
10 |
|
nfv |
⊢ Ⅎ 𝑚 𝑛 ∈ 𝑍 |
11 |
1 10
|
nfan |
⊢ Ⅎ 𝑚 ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) |
12 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝜑 ) |
13 |
2
|
uztrn2 |
⊢ ( ( 𝑛 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑗 ∈ 𝑍 ) |
14 |
13
|
ssd |
⊢ ( 𝑛 ∈ 𝑍 → ( ℤ≥ ‘ 𝑛 ) ⊆ 𝑍 ) |
15 |
14
|
sselda |
⊢ ( ( 𝑛 ∈ 𝑍 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑚 ∈ 𝑍 ) |
16 |
15
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑚 ∈ 𝑍 ) |
17 |
3
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) ∧ 𝑋 ∈ dom ( 𝐹 ‘ 𝑚 ) ) → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ∈ ℝ ) |
18 |
17
|
ex |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝑋 ∈ dom ( 𝐹 ‘ 𝑚 ) → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ∈ ℝ ) ) |
19 |
12 16 18
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( 𝑋 ∈ dom ( 𝐹 ‘ 𝑚 ) → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ∈ ℝ ) ) |
20 |
11 19
|
ralimdaa |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ dom ( 𝐹 ‘ 𝑚 ) → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ∈ ℝ ) ) |
21 |
20
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑛 ∈ 𝑍 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ dom ( 𝐹 ‘ 𝑚 ) → ∃ 𝑛 ∈ 𝑍 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ∈ ℝ ) ) |
22 |
9 21
|
mpd |
⊢ ( 𝜑 → ∃ 𝑛 ∈ 𝑍 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ∈ ℝ ) |