Metamath Proof Explorer


Theorem allbutfifvre

Description: Given a sequence of real-valued functions, and X that belongs to all but finitely many domains, then its function value is ultimately a real number. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses allbutfifvre.1 𝑚 𝜑
allbutfifvre.2 𝑍 = ( ℤ𝑀 )
allbutfifvre.3 ( ( 𝜑𝑚𝑍 ) → ( 𝐹𝑚 ) : dom ( 𝐹𝑚 ) ⟶ ℝ )
allbutfifvre.4 𝐷 = 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 )
allbutfifvre.5 ( 𝜑𝑋𝐷 )
Assertion allbutfifvre ( 𝜑 → ∃ 𝑛𝑍𝑚 ∈ ( ℤ𝑛 ) ( ( 𝐹𝑚 ) ‘ 𝑋 ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 allbutfifvre.1 𝑚 𝜑
2 allbutfifvre.2 𝑍 = ( ℤ𝑀 )
3 allbutfifvre.3 ( ( 𝜑𝑚𝑍 ) → ( 𝐹𝑚 ) : dom ( 𝐹𝑚 ) ⟶ ℝ )
4 allbutfifvre.4 𝐷 = 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 )
5 allbutfifvre.5 ( 𝜑𝑋𝐷 )
6 5 4 eleqtrdi ( 𝜑𝑋 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) )
7 eqid 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) = 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 )
8 2 7 allbutfi ( 𝑋 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ↔ ∃ 𝑛𝑍𝑚 ∈ ( ℤ𝑛 ) 𝑋 ∈ dom ( 𝐹𝑚 ) )
9 6 8 sylib ( 𝜑 → ∃ 𝑛𝑍𝑚 ∈ ( ℤ𝑛 ) 𝑋 ∈ dom ( 𝐹𝑚 ) )
10 nfv 𝑚 𝑛𝑍
11 1 10 nfan 𝑚 ( 𝜑𝑛𝑍 )
12 simpll ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑚 ∈ ( ℤ𝑛 ) ) → 𝜑 )
13 2 uztrn2 ( ( 𝑛𝑍𝑗 ∈ ( ℤ𝑛 ) ) → 𝑗𝑍 )
14 13 ssd ( 𝑛𝑍 → ( ℤ𝑛 ) ⊆ 𝑍 )
15 14 sselda ( ( 𝑛𝑍𝑚 ∈ ( ℤ𝑛 ) ) → 𝑚𝑍 )
16 15 adantll ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑚 ∈ ( ℤ𝑛 ) ) → 𝑚𝑍 )
17 3 ffvelrnda ( ( ( 𝜑𝑚𝑍 ) ∧ 𝑋 ∈ dom ( 𝐹𝑚 ) ) → ( ( 𝐹𝑚 ) ‘ 𝑋 ) ∈ ℝ )
18 17 ex ( ( 𝜑𝑚𝑍 ) → ( 𝑋 ∈ dom ( 𝐹𝑚 ) → ( ( 𝐹𝑚 ) ‘ 𝑋 ) ∈ ℝ ) )
19 12 16 18 syl2anc ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑚 ∈ ( ℤ𝑛 ) ) → ( 𝑋 ∈ dom ( 𝐹𝑚 ) → ( ( 𝐹𝑚 ) ‘ 𝑋 ) ∈ ℝ ) )
20 11 19 ralimdaa ( ( 𝜑𝑛𝑍 ) → ( ∀ 𝑚 ∈ ( ℤ𝑛 ) 𝑋 ∈ dom ( 𝐹𝑚 ) → ∀ 𝑚 ∈ ( ℤ𝑛 ) ( ( 𝐹𝑚 ) ‘ 𝑋 ) ∈ ℝ ) )
21 20 reximdva ( 𝜑 → ( ∃ 𝑛𝑍𝑚 ∈ ( ℤ𝑛 ) 𝑋 ∈ dom ( 𝐹𝑚 ) → ∃ 𝑛𝑍𝑚 ∈ ( ℤ𝑛 ) ( ( 𝐹𝑚 ) ‘ 𝑋 ) ∈ ℝ ) )
22 9 21 mpd ( 𝜑 → ∃ 𝑛𝑍𝑚 ∈ ( ℤ𝑛 ) ( ( 𝐹𝑚 ) ‘ 𝑋 ) ∈ ℝ )