Step |
Hyp |
Ref |
Expression |
1 |
|
allbutfiinf.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
allbutfiinf.a |
⊢ 𝐴 = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐵 |
3 |
|
allbutfiinf.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
4 |
|
allbutfiinf.n |
⊢ 𝑁 = inf ( { 𝑛 ∈ 𝑍 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 } , ℝ , < ) |
5 |
|
ssrab2 |
⊢ { 𝑛 ∈ 𝑍 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 } ⊆ 𝑍 |
6 |
4
|
a1i |
⊢ ( 𝜑 → 𝑁 = inf ( { 𝑛 ∈ 𝑍 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 } , ℝ , < ) ) |
7 |
5 1
|
sseqtri |
⊢ { 𝑛 ∈ 𝑍 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 } ⊆ ( ℤ≥ ‘ 𝑀 ) |
8 |
7
|
a1i |
⊢ ( 𝜑 → { 𝑛 ∈ 𝑍 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 } ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
9 |
1 2
|
allbutfi |
⊢ ( 𝑋 ∈ 𝐴 ↔ ∃ 𝑛 ∈ 𝑍 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 ) |
10 |
3 9
|
sylib |
⊢ ( 𝜑 → ∃ 𝑛 ∈ 𝑍 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 ) |
11 |
|
nfrab1 |
⊢ Ⅎ 𝑛 { 𝑛 ∈ 𝑍 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 } |
12 |
|
nfcv |
⊢ Ⅎ 𝑛 ∅ |
13 |
11 12
|
nfne |
⊢ Ⅎ 𝑛 { 𝑛 ∈ 𝑍 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 } ≠ ∅ |
14 |
|
rabid |
⊢ ( 𝑛 ∈ { 𝑛 ∈ 𝑍 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 } ↔ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 ) ) |
15 |
14
|
bicomi |
⊢ ( ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 ) ↔ 𝑛 ∈ { 𝑛 ∈ 𝑍 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 } ) |
16 |
15
|
biimpi |
⊢ ( ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 ) → 𝑛 ∈ { 𝑛 ∈ 𝑍 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 } ) |
17 |
16
|
ne0d |
⊢ ( ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 ) → { 𝑛 ∈ 𝑍 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 } ≠ ∅ ) |
18 |
17
|
ex |
⊢ ( 𝑛 ∈ 𝑍 → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 → { 𝑛 ∈ 𝑍 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 } ≠ ∅ ) ) |
19 |
13 18
|
rexlimi |
⊢ ( ∃ 𝑛 ∈ 𝑍 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 → { 𝑛 ∈ 𝑍 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 } ≠ ∅ ) |
20 |
19
|
a1i |
⊢ ( 𝜑 → ( ∃ 𝑛 ∈ 𝑍 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 → { 𝑛 ∈ 𝑍 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 } ≠ ∅ ) ) |
21 |
10 20
|
mpd |
⊢ ( 𝜑 → { 𝑛 ∈ 𝑍 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 } ≠ ∅ ) |
22 |
|
infssuzcl |
⊢ ( ( { 𝑛 ∈ 𝑍 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 } ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ { 𝑛 ∈ 𝑍 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 } ≠ ∅ ) → inf ( { 𝑛 ∈ 𝑍 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 } , ℝ , < ) ∈ { 𝑛 ∈ 𝑍 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 } ) |
23 |
8 21 22
|
syl2anc |
⊢ ( 𝜑 → inf ( { 𝑛 ∈ 𝑍 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 } , ℝ , < ) ∈ { 𝑛 ∈ 𝑍 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 } ) |
24 |
6 23
|
eqeltrd |
⊢ ( 𝜑 → 𝑁 ∈ { 𝑛 ∈ 𝑍 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 } ) |
25 |
5 24
|
sselid |
⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) |
26 |
|
nfcv |
⊢ Ⅎ 𝑛 ℝ |
27 |
|
nfcv |
⊢ Ⅎ 𝑛 < |
28 |
11 26 27
|
nfinf |
⊢ Ⅎ 𝑛 inf ( { 𝑛 ∈ 𝑍 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 } , ℝ , < ) |
29 |
4 28
|
nfcxfr |
⊢ Ⅎ 𝑛 𝑁 |
30 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑍 |
31 |
|
nfcv |
⊢ Ⅎ 𝑛 ℤ≥ |
32 |
31 29
|
nffv |
⊢ Ⅎ 𝑛 ( ℤ≥ ‘ 𝑁 ) |
33 |
|
nfv |
⊢ Ⅎ 𝑛 𝑋 ∈ 𝐵 |
34 |
32 33
|
nfralw |
⊢ Ⅎ 𝑛 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) 𝑋 ∈ 𝐵 |
35 |
|
nfcv |
⊢ Ⅎ 𝑚 ( ℤ≥ ‘ 𝑛 ) |
36 |
|
nfcv |
⊢ Ⅎ 𝑚 ℤ≥ |
37 |
|
nfra1 |
⊢ Ⅎ 𝑚 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 |
38 |
|
nfcv |
⊢ Ⅎ 𝑚 𝑍 |
39 |
37 38
|
nfrabw |
⊢ Ⅎ 𝑚 { 𝑛 ∈ 𝑍 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 } |
40 |
|
nfcv |
⊢ Ⅎ 𝑚 ℝ |
41 |
|
nfcv |
⊢ Ⅎ 𝑚 < |
42 |
39 40 41
|
nfinf |
⊢ Ⅎ 𝑚 inf ( { 𝑛 ∈ 𝑍 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 } , ℝ , < ) |
43 |
4 42
|
nfcxfr |
⊢ Ⅎ 𝑚 𝑁 |
44 |
36 43
|
nffv |
⊢ Ⅎ 𝑚 ( ℤ≥ ‘ 𝑁 ) |
45 |
|
fveq2 |
⊢ ( 𝑛 = 𝑁 → ( ℤ≥ ‘ 𝑛 ) = ( ℤ≥ ‘ 𝑁 ) ) |
46 |
35 44 45
|
raleqd |
⊢ ( 𝑛 = 𝑁 → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 ↔ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) 𝑋 ∈ 𝐵 ) ) |
47 |
29 30 34 46
|
elrabf |
⊢ ( 𝑁 ∈ { 𝑛 ∈ 𝑍 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 } ↔ ( 𝑁 ∈ 𝑍 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) 𝑋 ∈ 𝐵 ) ) |
48 |
47
|
biimpi |
⊢ ( 𝑁 ∈ { 𝑛 ∈ 𝑍 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 } → ( 𝑁 ∈ 𝑍 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) 𝑋 ∈ 𝐵 ) ) |
49 |
48
|
simprd |
⊢ ( 𝑁 ∈ { 𝑛 ∈ 𝑍 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 } → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) 𝑋 ∈ 𝐵 ) |
50 |
24 49
|
syl |
⊢ ( 𝜑 → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) 𝑋 ∈ 𝐵 ) |
51 |
25 50
|
jca |
⊢ ( 𝜑 → ( 𝑁 ∈ 𝑍 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) 𝑋 ∈ 𝐵 ) ) |