Metamath Proof Explorer
		
		
		
		Description:  Universal quantification implies restricted quantification.  (Contributed by NM, 20-Oct-2006)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | alral | ⊢  ( ∀ 𝑥 𝜑  →  ∀ 𝑥  ∈  𝐴 𝜑 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ala1 | ⊢ ( ∀ 𝑥 𝜑  →  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝜑 ) ) | 
						
							| 2 |  | df-ral | ⊢ ( ∀ 𝑥  ∈  𝐴 𝜑  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝜑 ) ) | 
						
							| 3 | 1 2 | sylibr | ⊢ ( ∀ 𝑥 𝜑  →  ∀ 𝑥  ∈  𝐴 𝜑 ) |