Metamath Proof Explorer


Theorem alral

Description: Universal quantification implies restricted quantification. (Contributed by NM, 20-Oct-2006)

Ref Expression
Assertion alral ( ∀ 𝑥 𝜑 → ∀ 𝑥𝐴 𝜑 )

Proof

Step Hyp Ref Expression
1 ala1 ( ∀ 𝑥 𝜑 → ∀ 𝑥 ( 𝑥𝐴𝜑 ) )
2 df-ral ( ∀ 𝑥𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥𝐴𝜑 ) )
3 1 2 sylibr ( ∀ 𝑥 𝜑 → ∀ 𝑥𝐴 𝜑 )