Metamath Proof Explorer


Theorem alrimdh

Description: Deduction form of Theorem 19.21 of Margaris p. 90, see 19.21 and 19.21h . (Contributed by NM, 10-Feb-1997) (Proof shortened by Andrew Salmon, 13-May-2011)

Ref Expression
Hypotheses alrimdh.1 ( 𝜑 → ∀ 𝑥 𝜑 )
alrimdh.2 ( 𝜓 → ∀ 𝑥 𝜓 )
alrimdh.3 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion alrimdh ( 𝜑 → ( 𝜓 → ∀ 𝑥 𝜒 ) )

Proof

Step Hyp Ref Expression
1 alrimdh.1 ( 𝜑 → ∀ 𝑥 𝜑 )
2 alrimdh.2 ( 𝜓 → ∀ 𝑥 𝜓 )
3 alrimdh.3 ( 𝜑 → ( 𝜓𝜒 ) )
4 1 3 alimdh ( 𝜑 → ( ∀ 𝑥 𝜓 → ∀ 𝑥 𝜒 ) )
5 2 4 syl5 ( 𝜑 → ( 𝜓 → ∀ 𝑥 𝜒 ) )