Description: Theorem *11.21 in WhiteheadRussell p. 160. (Contributed by Andrew Salmon, 24-May-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alrot3 | ⊢ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 𝜑 ↔ ∀ 𝑦 ∀ 𝑧 ∀ 𝑥 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alcom | ⊢ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 𝜑 ↔ ∀ 𝑦 ∀ 𝑥 ∀ 𝑧 𝜑 ) | |
| 2 | alcom | ⊢ ( ∀ 𝑥 ∀ 𝑧 𝜑 ↔ ∀ 𝑧 ∀ 𝑥 𝜑 ) | |
| 3 | 2 | albii | ⊢ ( ∀ 𝑦 ∀ 𝑥 ∀ 𝑧 𝜑 ↔ ∀ 𝑦 ∀ 𝑧 ∀ 𝑥 𝜑 ) |
| 4 | 1 3 | bitri | ⊢ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 𝜑 ↔ ∀ 𝑦 ∀ 𝑧 ∀ 𝑥 𝜑 ) |