Metamath Proof Explorer


Theorem alrot3

Description: Theorem *11.21 in WhiteheadRussell p. 160. (Contributed by Andrew Salmon, 24-May-2011)

Ref Expression
Assertion alrot3 ( ∀ 𝑥𝑦𝑧 𝜑 ↔ ∀ 𝑦𝑧𝑥 𝜑 )

Proof

Step Hyp Ref Expression
1 alcom ( ∀ 𝑥𝑦𝑧 𝜑 ↔ ∀ 𝑦𝑥𝑧 𝜑 )
2 alcom ( ∀ 𝑥𝑧 𝜑 ↔ ∀ 𝑧𝑥 𝜑 )
3 2 albii ( ∀ 𝑦𝑥𝑧 𝜑 ↔ ∀ 𝑦𝑧𝑥 𝜑 )
4 1 3 bitri ( ∀ 𝑥𝑦𝑧 𝜑 ↔ ∀ 𝑦𝑧𝑥 𝜑 )