Description: Theorem *11.21 in WhiteheadRussell p. 160. (Contributed by Andrew Salmon, 24-May-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | alrot3 | ⊢ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 𝜑 ↔ ∀ 𝑦 ∀ 𝑧 ∀ 𝑥 𝜑 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alcom | ⊢ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 𝜑 ↔ ∀ 𝑦 ∀ 𝑥 ∀ 𝑧 𝜑 ) | |
2 | alcom | ⊢ ( ∀ 𝑥 ∀ 𝑧 𝜑 ↔ ∀ 𝑧 ∀ 𝑥 𝜑 ) | |
3 | 2 | albii | ⊢ ( ∀ 𝑦 ∀ 𝑥 ∀ 𝑧 𝜑 ↔ ∀ 𝑦 ∀ 𝑧 ∀ 𝑥 𝜑 ) |
4 | 1 3 | bitri | ⊢ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 𝜑 ↔ ∀ 𝑦 ∀ 𝑧 ∀ 𝑥 𝜑 ) |