Description: Rotate four universal quantifiers twice. (Contributed by NM, 2-Feb-2005) (Proof shortened by Fan Zheng, 6-Jun-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | alrot4 | ⊢ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ∀ 𝑤 𝜑 ↔ ∀ 𝑧 ∀ 𝑤 ∀ 𝑥 ∀ 𝑦 𝜑 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alrot3 | ⊢ ( ∀ 𝑦 ∀ 𝑧 ∀ 𝑤 𝜑 ↔ ∀ 𝑧 ∀ 𝑤 ∀ 𝑦 𝜑 ) | |
2 | 1 | albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ∀ 𝑤 𝜑 ↔ ∀ 𝑥 ∀ 𝑧 ∀ 𝑤 ∀ 𝑦 𝜑 ) |
3 | alrot3 | ⊢ ( ∀ 𝑥 ∀ 𝑧 ∀ 𝑤 ∀ 𝑦 𝜑 ↔ ∀ 𝑧 ∀ 𝑤 ∀ 𝑥 ∀ 𝑦 𝜑 ) | |
4 | 2 3 | bitri | ⊢ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ∀ 𝑤 𝜑 ↔ ∀ 𝑧 ∀ 𝑤 ∀ 𝑥 ∀ 𝑦 𝜑 ) |