Metamath Proof Explorer


Theorem alrot4

Description: Rotate four universal quantifiers twice. (Contributed by NM, 2-Feb-2005) (Proof shortened by Fan Zheng, 6-Jun-2016)

Ref Expression
Assertion alrot4 ( ∀ 𝑥𝑦𝑧𝑤 𝜑 ↔ ∀ 𝑧𝑤𝑥𝑦 𝜑 )

Proof

Step Hyp Ref Expression
1 alrot3 ( ∀ 𝑦𝑧𝑤 𝜑 ↔ ∀ 𝑧𝑤𝑦 𝜑 )
2 1 albii ( ∀ 𝑥𝑦𝑧𝑤 𝜑 ↔ ∀ 𝑥𝑧𝑤𝑦 𝜑 )
3 alrot3 ( ∀ 𝑥𝑧𝑤𝑦 𝜑 ↔ ∀ 𝑧𝑤𝑥𝑦 𝜑 )
4 2 3 bitri ( ∀ 𝑥𝑦𝑧𝑤 𝜑 ↔ ∀ 𝑧𝑤𝑥𝑦 𝜑 )