Metamath Proof Explorer
Description: Show that A is less than B by showing that there is no positive
bound on the difference. (Contributed by Mario Carneiro, 12-Jun-2014)
|
|
Ref |
Expression |
|
Assertion |
alrple |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 ↔ ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( 𝐵 + 𝑥 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
rexr |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* ) |
2 |
|
xralrple |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 ↔ ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( 𝐵 + 𝑥 ) ) ) |
3 |
1 2
|
sylan |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 ↔ ∀ 𝑥 ∈ ℝ+ 𝐴 ≤ ( 𝐵 + 𝑥 ) ) ) |