Metamath Proof Explorer


Theorem alxfr

Description: Transfer universal quantification from a variable x to another variable y contained in expression A . (Contributed by NM, 18-Feb-2007)

Ref Expression
Hypothesis alxfr.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
Assertion alxfr ( ( ∀ 𝑦 𝐴𝐵 ∧ ∀ 𝑥𝑦 𝑥 = 𝐴 ) → ( ∀ 𝑥 𝜑 ↔ ∀ 𝑦 𝜓 ) )

Proof

Step Hyp Ref Expression
1 alxfr.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
2 1 spcgv ( 𝐴𝐵 → ( ∀ 𝑥 𝜑𝜓 ) )
3 2 com12 ( ∀ 𝑥 𝜑 → ( 𝐴𝐵𝜓 ) )
4 3 alimdv ( ∀ 𝑥 𝜑 → ( ∀ 𝑦 𝐴𝐵 → ∀ 𝑦 𝜓 ) )
5 4 com12 ( ∀ 𝑦 𝐴𝐵 → ( ∀ 𝑥 𝜑 → ∀ 𝑦 𝜓 ) )
6 5 adantr ( ( ∀ 𝑦 𝐴𝐵 ∧ ∀ 𝑥𝑦 𝑥 = 𝐴 ) → ( ∀ 𝑥 𝜑 → ∀ 𝑦 𝜓 ) )
7 nfa1 𝑦𝑦 𝜓
8 nfv 𝑦 𝜑
9 sp ( ∀ 𝑦 𝜓𝜓 )
10 9 1 syl5ibrcom ( ∀ 𝑦 𝜓 → ( 𝑥 = 𝐴𝜑 ) )
11 7 8 10 exlimd ( ∀ 𝑦 𝜓 → ( ∃ 𝑦 𝑥 = 𝐴𝜑 ) )
12 11 alimdv ( ∀ 𝑦 𝜓 → ( ∀ 𝑥𝑦 𝑥 = 𝐴 → ∀ 𝑥 𝜑 ) )
13 12 com12 ( ∀ 𝑥𝑦 𝑥 = 𝐴 → ( ∀ 𝑦 𝜓 → ∀ 𝑥 𝜑 ) )
14 13 adantl ( ( ∀ 𝑦 𝐴𝐵 ∧ ∀ 𝑥𝑦 𝑥 = 𝐴 ) → ( ∀ 𝑦 𝜓 → ∀ 𝑥 𝜑 ) )
15 6 14 impbid ( ( ∀ 𝑦 𝐴𝐵 ∧ ∀ 𝑥𝑦 𝑥 = 𝐴 ) → ( ∀ 𝑥 𝜑 ↔ ∀ 𝑦 𝜓 ) )