| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							alxfr.1 | 
							⊢ ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜓 ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							spcgv | 
							⊢ ( 𝐴  ∈  𝐵  →  ( ∀ 𝑥 𝜑  →  𝜓 ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							com12 | 
							⊢ ( ∀ 𝑥 𝜑  →  ( 𝐴  ∈  𝐵  →  𝜓 ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							alimdv | 
							⊢ ( ∀ 𝑥 𝜑  →  ( ∀ 𝑦 𝐴  ∈  𝐵  →  ∀ 𝑦 𝜓 ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							com12 | 
							⊢ ( ∀ 𝑦 𝐴  ∈  𝐵  →  ( ∀ 𝑥 𝜑  →  ∀ 𝑦 𝜓 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							adantr | 
							⊢ ( ( ∀ 𝑦 𝐴  ∈  𝐵  ∧  ∀ 𝑥 ∃ 𝑦 𝑥  =  𝐴 )  →  ( ∀ 𝑥 𝜑  →  ∀ 𝑦 𝜓 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							nfa1 | 
							⊢ Ⅎ 𝑦 ∀ 𝑦 𝜓  | 
						
						
							| 8 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑦 𝜑  | 
						
						
							| 9 | 
							
								
							 | 
							sp | 
							⊢ ( ∀ 𝑦 𝜓  →  𝜓 )  | 
						
						
							| 10 | 
							
								9 1
							 | 
							syl5ibrcom | 
							⊢ ( ∀ 𝑦 𝜓  →  ( 𝑥  =  𝐴  →  𝜑 ) )  | 
						
						
							| 11 | 
							
								7 8 10
							 | 
							exlimd | 
							⊢ ( ∀ 𝑦 𝜓  →  ( ∃ 𝑦 𝑥  =  𝐴  →  𝜑 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							alimdv | 
							⊢ ( ∀ 𝑦 𝜓  →  ( ∀ 𝑥 ∃ 𝑦 𝑥  =  𝐴  →  ∀ 𝑥 𝜑 ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							com12 | 
							⊢ ( ∀ 𝑥 ∃ 𝑦 𝑥  =  𝐴  →  ( ∀ 𝑦 𝜓  →  ∀ 𝑥 𝜑 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							adantl | 
							⊢ ( ( ∀ 𝑦 𝐴  ∈  𝐵  ∧  ∀ 𝑥 ∃ 𝑦 𝑥  =  𝐴 )  →  ( ∀ 𝑦 𝜓  →  ∀ 𝑥 𝜑 ) )  | 
						
						
							| 15 | 
							
								6 14
							 | 
							impbid | 
							⊢ ( ( ∀ 𝑦 𝐴  ∈  𝐵  ∧  ∀ 𝑥 ∃ 𝑦 𝑥  =  𝐴 )  →  ( ∀ 𝑥 𝜑  ↔  ∀ 𝑦 𝜓 ) )  |