Metamath Proof Explorer


Theorem an12s

Description: Swap two conjuncts in antecedent. The label suffix "s" means that an12 is combined with syl (or a variant). (Contributed by NM, 13-Mar-1996)

Ref Expression
Hypothesis an12s.1 ( ( 𝜑 ∧ ( 𝜓𝜒 ) ) → 𝜃 )
Assertion an12s ( ( 𝜓 ∧ ( 𝜑𝜒 ) ) → 𝜃 )

Proof

Step Hyp Ref Expression
1 an12s.1 ( ( 𝜑 ∧ ( 𝜓𝜒 ) ) → 𝜃 )
2 an12 ( ( 𝜓 ∧ ( 𝜑𝜒 ) ) ↔ ( 𝜑 ∧ ( 𝜓𝜒 ) ) )
3 2 1 sylbi ( ( 𝜓 ∧ ( 𝜑𝜒 ) ) → 𝜃 )