Description: Swap two conjuncts in antecedent. (Contributed by NM, 31-May-2006)
Ref | Expression | ||
---|---|---|---|
Hypothesis | an12s.1 | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) → 𝜃 ) | |
Assertion | an13s | ⊢ ( ( 𝜒 ∧ ( 𝜓 ∧ 𝜑 ) ) → 𝜃 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an12s.1 | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) → 𝜃 ) | |
2 | 1 | exp32 | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜒 → 𝜃 ) ) ) |
3 | 2 | com13 | ⊢ ( 𝜒 → ( 𝜓 → ( 𝜑 → 𝜃 ) ) ) |
4 | 3 | imp32 | ⊢ ( ( 𝜒 ∧ ( 𝜓 ∧ 𝜑 ) ) → 𝜃 ) |