Metamath Proof Explorer


Theorem an13s

Description: Swap two conjuncts in antecedent. (Contributed by NM, 31-May-2006)

Ref Expression
Hypothesis an12s.1 ( ( 𝜑 ∧ ( 𝜓𝜒 ) ) → 𝜃 )
Assertion an13s ( ( 𝜒 ∧ ( 𝜓𝜑 ) ) → 𝜃 )

Proof

Step Hyp Ref Expression
1 an12s.1 ( ( 𝜑 ∧ ( 𝜓𝜒 ) ) → 𝜃 )
2 1 exp32 ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) )
3 2 com13 ( 𝜒 → ( 𝜓 → ( 𝜑𝜃 ) ) )
4 3 imp32 ( ( 𝜒 ∧ ( 𝜓𝜑 ) ) → 𝜃 )