Metamath Proof Explorer


Theorem an21

Description: Swap two conjuncts. (Contributed by Peter Mazsa, 18-Sep-2022)

Ref Expression
Assertion an21 ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) ↔ ( 𝜓 ∧ ( 𝜑𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 biid ( ( 𝜑𝜒 ) ↔ ( 𝜑𝜒 ) )
2 1 bianassc ( ( 𝜓 ∧ ( 𝜑𝜒 ) ) ↔ ( ( 𝜑𝜓 ) ∧ 𝜒 ) )
3 2 bicomi ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) ↔ ( 𝜓 ∧ ( 𝜑𝜒 ) ) )