Metamath Proof Explorer


Theorem an3

Description: A rearrangement of conjuncts. (Contributed by Rodolfo Medina, 25-Sep-2010)

Ref Expression
Assertion an3 ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜃 ) ) → ( 𝜑𝜃 ) )

Proof

Step Hyp Ref Expression
1 an43 ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜃 ) ) ↔ ( ( 𝜑𝜃 ) ∧ ( 𝜓𝜒 ) ) )
2 1 simplbi ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜃 ) ) → ( 𝜑𝜃 ) )