Metamath Proof Explorer


Theorem an31

Description: A rearrangement of conjuncts. (Contributed by NM, 24-Jun-2012) (Proof shortened by Wolf Lammen, 31-Dec-2012)

Ref Expression
Assertion an31 ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) ↔ ( ( 𝜒𝜓 ) ∧ 𝜑 ) )

Proof

Step Hyp Ref Expression
1 an13 ( ( 𝜑 ∧ ( 𝜓𝜒 ) ) ↔ ( 𝜒 ∧ ( 𝜓𝜑 ) ) )
2 anass ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) ↔ ( 𝜑 ∧ ( 𝜓𝜒 ) ) )
3 anass ( ( ( 𝜒𝜓 ) ∧ 𝜑 ) ↔ ( 𝜒 ∧ ( 𝜓𝜑 ) ) )
4 1 2 3 3bitr4i ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) ↔ ( ( 𝜒𝜓 ) ∧ 𝜑 ) )