Description: A rearrangement of conjuncts. (Contributed by NM, 24-Jun-2012) (Proof shortened by Wolf Lammen, 31-Dec-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | an31 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ↔ ( ( 𝜒 ∧ 𝜓 ) ∧ 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an13 | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) ↔ ( 𝜒 ∧ ( 𝜓 ∧ 𝜑 ) ) ) | |
| 2 | anass | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ↔ ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) ) | |
| 3 | anass | ⊢ ( ( ( 𝜒 ∧ 𝜓 ) ∧ 𝜑 ) ↔ ( 𝜒 ∧ ( 𝜓 ∧ 𝜑 ) ) ) | |
| 4 | 1 2 3 | 3bitr4i | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ↔ ( ( 𝜒 ∧ 𝜓 ) ∧ 𝜑 ) ) |