Metamath Proof Explorer


Theorem an31s

Description: Swap two conjuncts in antecedent. (Contributed by NM, 31-May-2006)

Ref Expression
Hypothesis an32s.1 ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) → 𝜃 )
Assertion an31s ( ( ( 𝜒𝜓 ) ∧ 𝜑 ) → 𝜃 )

Proof

Step Hyp Ref Expression
1 an32s.1 ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) → 𝜃 )
2 1 exp31 ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) )
3 2 com13 ( 𝜒 → ( 𝜓 → ( 𝜑𝜃 ) ) )
4 3 imp31 ( ( ( 𝜒𝜓 ) ∧ 𝜑 ) → 𝜃 )