Step |
Hyp |
Ref |
Expression |
1 |
|
anandi |
⊢ ( ( 𝜑 ∧ ( ( 𝜓 ∧ 𝜒 ) ∧ 𝜃 ) ) ↔ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) ∧ ( 𝜑 ∧ 𝜃 ) ) ) |
2 |
|
anandi |
⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜑 ∧ 𝜒 ) ) ) |
3 |
1 2
|
bianbi |
⊢ ( ( 𝜑 ∧ ( ( 𝜓 ∧ 𝜒 ) ∧ 𝜃 ) ) ↔ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜑 ∧ 𝜒 ) ) ∧ ( 𝜑 ∧ 𝜃 ) ) ) |
4 |
|
df-3an |
⊢ ( ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) ↔ ( ( 𝜓 ∧ 𝜒 ) ∧ 𝜃 ) ) |
5 |
4
|
anbi2i |
⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) ) ↔ ( 𝜑 ∧ ( ( 𝜓 ∧ 𝜒 ) ∧ 𝜃 ) ) ) |
6 |
|
df-3an |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜑 ∧ 𝜒 ) ∧ ( 𝜑 ∧ 𝜃 ) ) ↔ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜑 ∧ 𝜒 ) ) ∧ ( 𝜑 ∧ 𝜃 ) ) ) |
7 |
3 5 6
|
3bitr4i |
⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜑 ∧ 𝜒 ) ∧ ( 𝜑 ∧ 𝜃 ) ) ) |