Metamath Proof Explorer


Theorem an3andi

Description: Distribution of conjunction over threefold conjunction. (Contributed by Thierry Arnoux, 8-Apr-2019)

Ref Expression
Assertion an3andi ( ( 𝜑 ∧ ( 𝜓𝜒𝜃 ) ) ↔ ( ( 𝜑𝜓 ) ∧ ( 𝜑𝜒 ) ∧ ( 𝜑𝜃 ) ) )

Proof

Step Hyp Ref Expression
1 df-3an ( ( 𝜓𝜒𝜃 ) ↔ ( ( 𝜓𝜒 ) ∧ 𝜃 ) )
2 1 anbi2i ( ( 𝜑 ∧ ( 𝜓𝜒𝜃 ) ) ↔ ( 𝜑 ∧ ( ( 𝜓𝜒 ) ∧ 𝜃 ) ) )
3 anandi ( ( 𝜑 ∧ ( ( 𝜓𝜒 ) ∧ 𝜃 ) ) ↔ ( ( 𝜑 ∧ ( 𝜓𝜒 ) ) ∧ ( 𝜑𝜃 ) ) )
4 anandi ( ( 𝜑 ∧ ( 𝜓𝜒 ) ) ↔ ( ( 𝜑𝜓 ) ∧ ( 𝜑𝜒 ) ) )
5 4 anbi1i ( ( ( 𝜑 ∧ ( 𝜓𝜒 ) ) ∧ ( 𝜑𝜃 ) ) ↔ ( ( ( 𝜑𝜓 ) ∧ ( 𝜑𝜒 ) ) ∧ ( 𝜑𝜃 ) ) )
6 2 3 5 3bitri ( ( 𝜑 ∧ ( 𝜓𝜒𝜃 ) ) ↔ ( ( ( 𝜑𝜓 ) ∧ ( 𝜑𝜒 ) ) ∧ ( 𝜑𝜃 ) ) )
7 df-3an ( ( ( 𝜑𝜓 ) ∧ ( 𝜑𝜒 ) ∧ ( 𝜑𝜃 ) ) ↔ ( ( ( 𝜑𝜓 ) ∧ ( 𝜑𝜒 ) ) ∧ ( 𝜑𝜃 ) ) )
8 6 7 bitr4i ( ( 𝜑 ∧ ( 𝜓𝜒𝜃 ) ) ↔ ( ( 𝜑𝜓 ) ∧ ( 𝜑𝜒 ) ∧ ( 𝜑𝜃 ) ) )