| Step | Hyp | Ref | Expression | 
						
							| 1 |  | anandi | ⊢ ( ( 𝜑  ∧  ( ( 𝜓  ∧  𝜒 )  ∧  𝜃 ) )  ↔  ( ( 𝜑  ∧  ( 𝜓  ∧  𝜒 ) )  ∧  ( 𝜑  ∧  𝜃 ) ) ) | 
						
							| 2 |  | anandi | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝜒 ) )  ↔  ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝜑  ∧  𝜒 ) ) ) | 
						
							| 3 | 1 2 | bianbi | ⊢ ( ( 𝜑  ∧  ( ( 𝜓  ∧  𝜒 )  ∧  𝜃 ) )  ↔  ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝜑  ∧  𝜒 ) )  ∧  ( 𝜑  ∧  𝜃 ) ) ) | 
						
							| 4 |  | df-3an | ⊢ ( ( 𝜓  ∧  𝜒  ∧  𝜃 )  ↔  ( ( 𝜓  ∧  𝜒 )  ∧  𝜃 ) ) | 
						
							| 5 | 4 | anbi2i | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝜒  ∧  𝜃 ) )  ↔  ( 𝜑  ∧  ( ( 𝜓  ∧  𝜒 )  ∧  𝜃 ) ) ) | 
						
							| 6 |  | df-3an | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝜑  ∧  𝜒 )  ∧  ( 𝜑  ∧  𝜃 ) )  ↔  ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝜑  ∧  𝜒 ) )  ∧  ( 𝜑  ∧  𝜃 ) ) ) | 
						
							| 7 | 3 5 6 | 3bitr4i | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝜒  ∧  𝜃 ) )  ↔  ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝜑  ∧  𝜒 )  ∧  ( 𝜑  ∧  𝜃 ) ) ) |