Metamath Proof Explorer


Theorem anabss3

Description: Absorption of antecedent into conjunction. (Contributed by NM, 20-Jul-1996) (Proof shortened by Wolf Lammen, 1-Jan-2013)

Ref Expression
Hypothesis anabss3.1 ( ( ( 𝜑𝜓 ) ∧ 𝜓 ) → 𝜒 )
Assertion anabss3 ( ( 𝜑𝜓 ) → 𝜒 )

Proof

Step Hyp Ref Expression
1 anabss3.1 ( ( ( 𝜑𝜓 ) ∧ 𝜓 ) → 𝜒 )
2 1 anasss ( ( 𝜑 ∧ ( 𝜓𝜓 ) ) → 𝜒 )
3 2 anabsan2 ( ( 𝜑𝜓 ) → 𝜒 )