Metamath Proof Explorer


Theorem anabss5

Description: Absorption of antecedent into conjunction. (Contributed by NM, 10-May-1994) (Proof shortened by Wolf Lammen, 1-Jan-2013)

Ref Expression
Hypothesis anabss5.1 ( ( 𝜑 ∧ ( 𝜑𝜓 ) ) → 𝜒 )
Assertion anabss5 ( ( 𝜑𝜓 ) → 𝜒 )

Proof

Step Hyp Ref Expression
1 anabss5.1 ( ( 𝜑 ∧ ( 𝜑𝜓 ) ) → 𝜒 )
2 1 anassrs ( ( ( 𝜑𝜑 ) ∧ 𝜓 ) → 𝜒 )
3 2 anabsan ( ( 𝜑𝜓 ) → 𝜒 )