Description: Distribution of conjunction over conjunction. (Contributed by NM, 14-Aug-1995)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | anandi | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜑 ∧ 𝜒 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anidm | ⊢ ( ( 𝜑 ∧ 𝜑 ) ↔ 𝜑 ) | |
| 2 | 1 | anbi1i | ⊢ ( ( ( 𝜑 ∧ 𝜑 ) ∧ ( 𝜓 ∧ 𝜒 ) ) ↔ ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) ) |
| 3 | an4 | ⊢ ( ( ( 𝜑 ∧ 𝜑 ) ∧ ( 𝜓 ∧ 𝜒 ) ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜑 ∧ 𝜒 ) ) ) | |
| 4 | 2 3 | bitr3i | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜑 ∧ 𝜒 ) ) ) |