Description: Distribution of conjunction over conjunction. (Contributed by NM, 14-Aug-1995)
Ref | Expression | ||
---|---|---|---|
Assertion | anandi | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜑 ∧ 𝜒 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anidm | ⊢ ( ( 𝜑 ∧ 𝜑 ) ↔ 𝜑 ) | |
2 | 1 | anbi1i | ⊢ ( ( ( 𝜑 ∧ 𝜑 ) ∧ ( 𝜓 ∧ 𝜒 ) ) ↔ ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) ) |
3 | an4 | ⊢ ( ( ( 𝜑 ∧ 𝜑 ) ∧ ( 𝜓 ∧ 𝜒 ) ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜑 ∧ 𝜒 ) ) ) | |
4 | 2 3 | bitr3i | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜑 ∧ 𝜒 ) ) ) |