Metamath Proof Explorer


Theorem anandi

Description: Distribution of conjunction over conjunction. (Contributed by NM, 14-Aug-1995)

Ref Expression
Assertion anandi ( ( 𝜑 ∧ ( 𝜓𝜒 ) ) ↔ ( ( 𝜑𝜓 ) ∧ ( 𝜑𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 anidm ( ( 𝜑𝜑 ) ↔ 𝜑 )
2 1 anbi1i ( ( ( 𝜑𝜑 ) ∧ ( 𝜓𝜒 ) ) ↔ ( 𝜑 ∧ ( 𝜓𝜒 ) ) )
3 an4 ( ( ( 𝜑𝜑 ) ∧ ( 𝜓𝜒 ) ) ↔ ( ( 𝜑𝜓 ) ∧ ( 𝜑𝜒 ) ) )
4 2 3 bitr3i ( ( 𝜑 ∧ ( 𝜓𝜒 ) ) ↔ ( ( 𝜑𝜓 ) ∧ ( 𝜑𝜒 ) ) )