Metamath Proof Explorer


Theorem anandi3

Description: Distribution of triple conjunction over conjunction. (Contributed by David A. Wheeler, 4-Nov-2018)

Ref Expression
Assertion anandi3 ( ( 𝜑𝜓𝜒 ) ↔ ( ( 𝜑𝜓 ) ∧ ( 𝜑𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 3anass ( ( 𝜑𝜓𝜒 ) ↔ ( 𝜑 ∧ ( 𝜓𝜒 ) ) )
2 anandi ( ( 𝜑 ∧ ( 𝜓𝜒 ) ) ↔ ( ( 𝜑𝜓 ) ∧ ( 𝜑𝜒 ) ) )
3 1 2 bitri ( ( 𝜑𝜓𝜒 ) ↔ ( ( 𝜑𝜓 ) ∧ ( 𝜑𝜒 ) ) )