Metamath Proof Explorer


Theorem anandi3r

Description: Distribution of triple conjunction over conjunction. (Contributed by David A. Wheeler, 4-Nov-2018)

Ref Expression
Assertion anandi3r ( ( 𝜑𝜓𝜒 ) ↔ ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 3anan32 ( ( 𝜑𝜓𝜒 ) ↔ ( ( 𝜑𝜒 ) ∧ 𝜓 ) )
2 anandir ( ( ( 𝜑𝜒 ) ∧ 𝜓 ) ↔ ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜓 ) ) )
3 1 2 bitri ( ( 𝜑𝜓𝜒 ) ↔ ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜓 ) ) )