Description: Distribution of triple conjunction over conjunction. (Contributed by David A. Wheeler, 4-Nov-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | anandi3r | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜒 ∧ 𝜓 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anan32 | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜒 ) ∧ 𝜓 ) ) | |
2 | anandir | ⊢ ( ( ( 𝜑 ∧ 𝜒 ) ∧ 𝜓 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜒 ∧ 𝜓 ) ) ) | |
3 | 1 2 | bitri | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜒 ∧ 𝜓 ) ) ) |