Description: Distribution of conjunction over conjunction. (Contributed by NM, 24-Aug-1995)
Ref | Expression | ||
---|---|---|---|
Assertion | anandir | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜒 ) ∧ ( 𝜓 ∧ 𝜒 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anidm | ⊢ ( ( 𝜒 ∧ 𝜒 ) ↔ 𝜒 ) | |
2 | 1 | anbi2i | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜒 ∧ 𝜒 ) ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ) |
3 | an4 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜒 ∧ 𝜒 ) ) ↔ ( ( 𝜑 ∧ 𝜒 ) ∧ ( 𝜓 ∧ 𝜒 ) ) ) | |
4 | 2 3 | bitr3i | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜒 ) ∧ ( 𝜓 ∧ 𝜒 ) ) ) |