Metamath Proof Explorer


Theorem anandirs

Description: Inference that undistributes conjunction in the antecedent. (Contributed by NM, 7-Jun-2004)

Ref Expression
Hypothesis anandirs.1 ( ( ( 𝜑𝜒 ) ∧ ( 𝜓𝜒 ) ) → 𝜏 )
Assertion anandirs ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) → 𝜏 )

Proof

Step Hyp Ref Expression
1 anandirs.1 ( ( ( 𝜑𝜒 ) ∧ ( 𝜓𝜒 ) ) → 𝜏 )
2 1 an4s ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜒 ) ) → 𝜏 )
3 2 anabsan2 ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) → 𝜏 )