Description: Inference that undistributes conjunction in the antecedent. (Contributed by NM, 7-Jun-2004)
Ref | Expression | ||
---|---|---|---|
Hypothesis | anandirs.1 | ⊢ ( ( ( 𝜑 ∧ 𝜒 ) ∧ ( 𝜓 ∧ 𝜒 ) ) → 𝜏 ) | |
Assertion | anandirs | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) → 𝜏 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anandirs.1 | ⊢ ( ( ( 𝜑 ∧ 𝜒 ) ∧ ( 𝜓 ∧ 𝜒 ) ) → 𝜏 ) | |
2 | 1 | an4s | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜒 ∧ 𝜒 ) ) → 𝜏 ) |
3 | 2 | anabsan2 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) → 𝜏 ) |