Description: Inference that undistributes conjunction in the antecedent. (Contributed by NM, 7-Jun-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | anandirs.1 | ⊢ ( ( ( 𝜑 ∧ 𝜒 ) ∧ ( 𝜓 ∧ 𝜒 ) ) → 𝜏 ) | |
| Assertion | anandirs | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) → 𝜏 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anandirs.1 | ⊢ ( ( ( 𝜑 ∧ 𝜒 ) ∧ ( 𝜓 ∧ 𝜒 ) ) → 𝜏 ) | |
| 2 | 1 | an4s | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜒 ∧ 𝜒 ) ) → 𝜏 ) |
| 3 | 2 | anabsan2 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) → 𝜏 ) |