Metamath Proof Explorer


Theorem anandis

Description: Inference that undistributes conjunction in the antecedent. (Contributed by NM, 7-Jun-2004)

Ref Expression
Hypothesis anandis.1 ( ( ( 𝜑𝜓 ) ∧ ( 𝜑𝜒 ) ) → 𝜏 )
Assertion anandis ( ( 𝜑 ∧ ( 𝜓𝜒 ) ) → 𝜏 )

Proof

Step Hyp Ref Expression
1 anandis.1 ( ( ( 𝜑𝜓 ) ∧ ( 𝜑𝜒 ) ) → 𝜏 )
2 1 an4s ( ( ( 𝜑𝜑 ) ∧ ( 𝜓𝜒 ) ) → 𝜏 )
3 2 anabsan ( ( 𝜑 ∧ ( 𝜓𝜒 ) ) → 𝜏 )