Description: Commutative-associative law for conjunction in an antecedent. (Contributed by Jeff Madsen, 19-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | anass1rs.1 | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) → 𝜃 ) | |
| Assertion | anass1rs | ⊢ ( ( ( 𝜑 ∧ 𝜒 ) ∧ 𝜓 ) → 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anass1rs.1 | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) → 𝜃 ) | |
| 2 | 1 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) → 𝜃 ) |
| 3 | 2 | an32s | ⊢ ( ( ( 𝜑 ∧ 𝜒 ) ∧ 𝜓 ) → 𝜃 ) |