Description: Commutative-associative law for conjunction in an antecedent. (Contributed by Jeff Madsen, 19-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Hypothesis | anass1rs.1 | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) → 𝜃 ) | |
Assertion | anass1rs | ⊢ ( ( ( 𝜑 ∧ 𝜒 ) ∧ 𝜓 ) → 𝜃 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anass1rs.1 | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) → 𝜃 ) | |
2 | 1 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) → 𝜃 ) |
3 | 2 | an32s | ⊢ ( ( ( 𝜑 ∧ 𝜒 ) ∧ 𝜓 ) → 𝜃 ) |