Metamath Proof Explorer


Theorem anass1rs

Description: Commutative-associative law for conjunction in an antecedent. (Contributed by Jeff Madsen, 19-Jun-2011)

Ref Expression
Hypothesis anass1rs.1 ( ( 𝜑 ∧ ( 𝜓𝜒 ) ) → 𝜃 )
Assertion anass1rs ( ( ( 𝜑𝜒 ) ∧ 𝜓 ) → 𝜃 )

Proof

Step Hyp Ref Expression
1 anass1rs.1 ( ( 𝜑 ∧ ( 𝜓𝜒 ) ) → 𝜃 )
2 1 anassrs ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) → 𝜃 )
3 2 an32s ( ( ( 𝜑𝜒 ) ∧ 𝜓 ) → 𝜃 )