Metamath Proof Explorer


Theorem anbi12d

Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 26-May-1993)

Ref Expression
Hypotheses anbi12d.1 ( 𝜑 → ( 𝜓𝜒 ) )
anbi12d.2 ( 𝜑 → ( 𝜃𝜏 ) )
Assertion anbi12d ( 𝜑 → ( ( 𝜓𝜃 ) ↔ ( 𝜒𝜏 ) ) )

Proof

Step Hyp Ref Expression
1 anbi12d.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 anbi12d.2 ( 𝜑 → ( 𝜃𝜏 ) )
3 1 anbi1d ( 𝜑 → ( ( 𝜓𝜃 ) ↔ ( 𝜒𝜃 ) ) )
4 2 anbi2d ( 𝜑 → ( ( 𝜒𝜃 ) ↔ ( 𝜒𝜏 ) ) )
5 3 4 bitrd ( 𝜑 → ( ( 𝜓𝜃 ) ↔ ( 𝜒𝜏 ) ) )