Description: Conjoin both sides of two equivalences. (Contributed by NM, 12-Mar-1993)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | anbi12.1 | ⊢ ( 𝜑 ↔ 𝜓 ) | |
| anbi12.2 | ⊢ ( 𝜒 ↔ 𝜃 ) | ||
| Assertion | anbi12i | ⊢ ( ( 𝜑 ∧ 𝜒 ) ↔ ( 𝜓 ∧ 𝜃 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anbi12.1 | ⊢ ( 𝜑 ↔ 𝜓 ) | |
| 2 | anbi12.2 | ⊢ ( 𝜒 ↔ 𝜃 ) | |
| 3 | 2 | anbi2i | ⊢ ( ( 𝜑 ∧ 𝜒 ) ↔ ( 𝜑 ∧ 𝜃 ) ) |
| 4 | 3 1 | bianbi | ⊢ ( ( 𝜑 ∧ 𝜒 ) ↔ ( 𝜓 ∧ 𝜃 ) ) |