Metamath Proof Explorer


Theorem anbiim

Description: Adding biconditional when antecedents are conjuncted. (Contributed by metakunt, 16-Apr-2024) (Proof shortened by Wolf Lammen, 7-May-2025)

Ref Expression
Hypotheses anbiim.1 ( 𝜑 → ( 𝜒𝜃 ) )
anbiim.2 ( 𝜓 → ( 𝜃𝜒 ) )
Assertion anbiim ( ( 𝜑𝜓 ) → ( 𝜒𝜃 ) )

Proof

Step Hyp Ref Expression
1 anbiim.1 ( 𝜑 → ( 𝜒𝜃 ) )
2 anbiim.2 ( 𝜓 → ( 𝜃𝜒 ) )
3 1 adantr ( ( 𝜑𝜓 ) → ( 𝜒𝜃 ) )
4 2 adantl ( ( 𝜑𝜓 ) → ( 𝜃𝜒 ) )
5 3 4 impbid ( ( 𝜑𝜓 ) → ( 𝜒𝜃 ) )