Metamath Proof Explorer


Theorem ancom1s

Description: Inference commuting a nested conjunction in antecedent. (Contributed by NM, 24-May-2006) (Proof shortened by Wolf Lammen, 24-Nov-2012)

Ref Expression
Hypothesis an32s.1 ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) → 𝜃 )
Assertion ancom1s ( ( ( 𝜓𝜑 ) ∧ 𝜒 ) → 𝜃 )

Proof

Step Hyp Ref Expression
1 an32s.1 ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) → 𝜃 )
2 pm3.22 ( ( 𝜓𝜑 ) → ( 𝜑𝜓 ) )
3 2 1 sylan ( ( ( 𝜓𝜑 ) ∧ 𝜒 ) → 𝜃 )