Metamath Proof Explorer
Description: Inference commuting a nested conjunction in antecedent. (Contributed by NM, 24-May-2006) (Proof shortened by Wolf Lammen, 24-Nov-2012)
|
|
Ref |
Expression |
|
Hypothesis |
an32s.1 |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) → 𝜃 ) |
|
Assertion |
ancom1s |
⊢ ( ( ( 𝜓 ∧ 𝜑 ) ∧ 𝜒 ) → 𝜃 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
an32s.1 |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) → 𝜃 ) |
2 |
|
pm3.22 |
⊢ ( ( 𝜓 ∧ 𝜑 ) → ( 𝜑 ∧ 𝜓 ) ) |
3 |
2 1
|
sylan |
⊢ ( ( ( 𝜓 ∧ 𝜑 ) ∧ 𝜒 ) → 𝜃 ) |