Metamath Proof Explorer
Description: Inference commuting a nested conjunction in antecedent. (Contributed by NM, 24-May-2006) (Proof shortened by Wolf Lammen, 24-Nov-2012)
|
|
Ref |
Expression |
|
Hypothesis |
an12s.1 |
⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) → 𝜃 ) |
|
Assertion |
ancom2s |
⊢ ( ( 𝜑 ∧ ( 𝜒 ∧ 𝜓 ) ) → 𝜃 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
an12s.1 |
⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) → 𝜃 ) |
| 2 |
|
pm3.22 |
⊢ ( ( 𝜒 ∧ 𝜓 ) → ( 𝜓 ∧ 𝜒 ) ) |
| 3 |
2 1
|
sylan2 |
⊢ ( ( 𝜑 ∧ ( 𝜒 ∧ 𝜓 ) ) → 𝜃 ) |