Description: Commutation of conjuncts in consequent. (Contributed by Jeff Hankins, 14-Aug-2009)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ancomd.1 | ⊢ ( 𝜑 → ( 𝜓 ∧ 𝜒 ) ) | |
| Assertion | ancomd | ⊢ ( 𝜑 → ( 𝜒 ∧ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancomd.1 | ⊢ ( 𝜑 → ( 𝜓 ∧ 𝜒 ) ) | |
| 2 | ancom | ⊢ ( ( 𝜓 ∧ 𝜒 ) ↔ ( 𝜒 ∧ 𝜓 ) ) | |
| 3 | 1 2 | sylib | ⊢ ( 𝜑 → ( 𝜒 ∧ 𝜓 ) ) |