Description: Double distributive law for conjunction. (Contributed by NM, 12-Aug-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | anddi | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) ∧ ( 𝜒 ∨ 𝜃 ) ) ↔ ( ( ( 𝜑 ∧ 𝜒 ) ∨ ( 𝜑 ∧ 𝜃 ) ) ∨ ( ( 𝜓 ∧ 𝜒 ) ∨ ( 𝜓 ∧ 𝜃 ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | andir | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) ∧ ( 𝜒 ∨ 𝜃 ) ) ↔ ( ( 𝜑 ∧ ( 𝜒 ∨ 𝜃 ) ) ∨ ( 𝜓 ∧ ( 𝜒 ∨ 𝜃 ) ) ) ) | |
2 | andi | ⊢ ( ( 𝜑 ∧ ( 𝜒 ∨ 𝜃 ) ) ↔ ( ( 𝜑 ∧ 𝜒 ) ∨ ( 𝜑 ∧ 𝜃 ) ) ) | |
3 | andi | ⊢ ( ( 𝜓 ∧ ( 𝜒 ∨ 𝜃 ) ) ↔ ( ( 𝜓 ∧ 𝜒 ) ∨ ( 𝜓 ∧ 𝜃 ) ) ) | |
4 | 2 3 | orbi12i | ⊢ ( ( ( 𝜑 ∧ ( 𝜒 ∨ 𝜃 ) ) ∨ ( 𝜓 ∧ ( 𝜒 ∨ 𝜃 ) ) ) ↔ ( ( ( 𝜑 ∧ 𝜒 ) ∨ ( 𝜑 ∧ 𝜃 ) ) ∨ ( ( 𝜓 ∧ 𝜒 ) ∨ ( 𝜓 ∧ 𝜃 ) ) ) ) |
5 | 1 4 | bitri | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) ∧ ( 𝜒 ∨ 𝜃 ) ) ↔ ( ( ( 𝜑 ∧ 𝜒 ) ∨ ( 𝜑 ∧ 𝜃 ) ) ∨ ( ( 𝜓 ∧ 𝜒 ) ∨ ( 𝜓 ∧ 𝜃 ) ) ) ) |