Description: Distributive law for conjunction. Theorem *4.4 of WhiteheadRussell p. 118. (Contributed by NM, 21-Jun-1993) (Proof shortened by Wolf Lammen, 5-Jan-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | andi | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∨ 𝜒 ) ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∨ ( 𝜑 ∧ 𝜒 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝜑 ∧ 𝜓 ) ∨ ( 𝜑 ∧ 𝜒 ) ) ) | |
2 | olc | ⊢ ( ( 𝜑 ∧ 𝜒 ) → ( ( 𝜑 ∧ 𝜓 ) ∨ ( 𝜑 ∧ 𝜒 ) ) ) | |
3 | 1 2 | jaodan | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∨ 𝜒 ) ) → ( ( 𝜑 ∧ 𝜓 ) ∨ ( 𝜑 ∧ 𝜒 ) ) ) |
4 | orc | ⊢ ( 𝜓 → ( 𝜓 ∨ 𝜒 ) ) | |
5 | 4 | anim2i | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝜑 ∧ ( 𝜓 ∨ 𝜒 ) ) ) |
6 | olc | ⊢ ( 𝜒 → ( 𝜓 ∨ 𝜒 ) ) | |
7 | 6 | anim2i | ⊢ ( ( 𝜑 ∧ 𝜒 ) → ( 𝜑 ∧ ( 𝜓 ∨ 𝜒 ) ) ) |
8 | 5 7 | jaoi | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∨ ( 𝜑 ∧ 𝜒 ) ) → ( 𝜑 ∧ ( 𝜓 ∨ 𝜒 ) ) ) |
9 | 3 8 | impbii | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∨ 𝜒 ) ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∨ ( 𝜑 ∧ 𝜒 ) ) ) |