Description: Distributive law for conjunction. (Contributed by NM, 12-Aug-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | andir | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) ∧ 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜒 ) ∨ ( 𝜓 ∧ 𝜒 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | andi | ⊢ ( ( 𝜒 ∧ ( 𝜑 ∨ 𝜓 ) ) ↔ ( ( 𝜒 ∧ 𝜑 ) ∨ ( 𝜒 ∧ 𝜓 ) ) ) | |
| 2 | ancom | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) ∧ 𝜒 ) ↔ ( 𝜒 ∧ ( 𝜑 ∨ 𝜓 ) ) ) | |
| 3 | ancom | ⊢ ( ( 𝜑 ∧ 𝜒 ) ↔ ( 𝜒 ∧ 𝜑 ) ) | |
| 4 | ancom | ⊢ ( ( 𝜓 ∧ 𝜒 ) ↔ ( 𝜒 ∧ 𝜓 ) ) | |
| 5 | 3 4 | orbi12i | ⊢ ( ( ( 𝜑 ∧ 𝜒 ) ∨ ( 𝜓 ∧ 𝜒 ) ) ↔ ( ( 𝜒 ∧ 𝜑 ) ∨ ( 𝜒 ∧ 𝜓 ) ) ) |
| 6 | 1 2 5 | 3bitr4i | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) ∧ 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜒 ) ∨ ( 𝜓 ∧ 𝜒 ) ) ) |