Description: Distributive law for conjunction. (Contributed by NM, 12-Aug-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | andir | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) ∧ 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜒 ) ∨ ( 𝜓 ∧ 𝜒 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | andi | ⊢ ( ( 𝜒 ∧ ( 𝜑 ∨ 𝜓 ) ) ↔ ( ( 𝜒 ∧ 𝜑 ) ∨ ( 𝜒 ∧ 𝜓 ) ) ) | |
2 | ancom | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) ∧ 𝜒 ) ↔ ( 𝜒 ∧ ( 𝜑 ∨ 𝜓 ) ) ) | |
3 | ancom | ⊢ ( ( 𝜑 ∧ 𝜒 ) ↔ ( 𝜒 ∧ 𝜑 ) ) | |
4 | ancom | ⊢ ( ( 𝜓 ∧ 𝜒 ) ↔ ( 𝜒 ∧ 𝜓 ) ) | |
5 | 3 4 | orbi12i | ⊢ ( ( ( 𝜑 ∧ 𝜒 ) ∨ ( 𝜓 ∧ 𝜒 ) ) ↔ ( ( 𝜒 ∧ 𝜑 ) ∨ ( 𝜒 ∧ 𝜓 ) ) ) |
6 | 1 2 5 | 3bitr4i | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) ∧ 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜒 ) ∨ ( 𝜓 ∧ 𝜒 ) ) ) |