| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3anass |
⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) ) |
| 2 |
|
pm4.63 |
⊢ ( ¬ ( 𝜓 → ¬ 𝜒 ) ↔ ( 𝜓 ∧ 𝜒 ) ) |
| 3 |
2
|
anbi2i |
⊢ ( ( 𝜑 ∧ ¬ ( 𝜓 → ¬ 𝜒 ) ) ↔ ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) ) |
| 4 |
|
annim |
⊢ ( ( 𝜑 ∧ ¬ ( 𝜓 → ¬ 𝜒 ) ) ↔ ¬ ( 𝜑 → ( 𝜓 → ¬ 𝜒 ) ) ) |
| 5 |
1 3 4
|
3bitr2i |
⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ¬ ( 𝜑 → ( 𝜓 → ¬ 𝜒 ) ) ) |
| 6 |
|
df-3nand |
⊢ ( ( 𝜑 ⊼ 𝜓 ⊼ 𝜒 ) ↔ ( 𝜑 → ( 𝜓 → ¬ 𝜒 ) ) ) |
| 7 |
6
|
notbii |
⊢ ( ¬ ( 𝜑 ⊼ 𝜓 ⊼ 𝜒 ) ↔ ¬ ( 𝜑 → ( 𝜓 → ¬ 𝜒 ) ) ) |
| 8 |
|
nannot |
⊢ ( ¬ ( 𝜑 ⊼ 𝜓 ⊼ 𝜒 ) ↔ ( ( 𝜑 ⊼ 𝜓 ⊼ 𝜒 ) ⊼ ( 𝜑 ⊼ 𝜓 ⊼ 𝜒 ) ) ) |
| 9 |
5 7 8
|
3bitr2i |
⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( ( 𝜑 ⊼ 𝜓 ⊼ 𝜒 ) ⊼ ( 𝜑 ⊼ 𝜓 ⊼ 𝜒 ) ) ) |