Metamath Proof Explorer


Theorem andnand1

Description: Double and in terms of double nand. (Contributed by Anthony Hart, 2-Sep-2011)

Ref Expression
Assertion andnand1 ( ( 𝜑𝜓𝜒 ) ↔ ( ( 𝜑𝜓𝜒 ) ⊼ ( 𝜑𝜓𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 3anass ( ( 𝜑𝜓𝜒 ) ↔ ( 𝜑 ∧ ( 𝜓𝜒 ) ) )
2 pm4.63 ( ¬ ( 𝜓 → ¬ 𝜒 ) ↔ ( 𝜓𝜒 ) )
3 2 anbi2i ( ( 𝜑 ∧ ¬ ( 𝜓 → ¬ 𝜒 ) ) ↔ ( 𝜑 ∧ ( 𝜓𝜒 ) ) )
4 annim ( ( 𝜑 ∧ ¬ ( 𝜓 → ¬ 𝜒 ) ) ↔ ¬ ( 𝜑 → ( 𝜓 → ¬ 𝜒 ) ) )
5 1 3 4 3bitr2i ( ( 𝜑𝜓𝜒 ) ↔ ¬ ( 𝜑 → ( 𝜓 → ¬ 𝜒 ) ) )
6 df-3nand ( ( 𝜑𝜓𝜒 ) ↔ ( 𝜑 → ( 𝜓 → ¬ 𝜒 ) ) )
7 6 notbii ( ¬ ( 𝜑𝜓𝜒 ) ↔ ¬ ( 𝜑 → ( 𝜓 → ¬ 𝜒 ) ) )
8 nannot ( ¬ ( 𝜑𝜓𝜒 ) ↔ ( ( 𝜑𝜓𝜒 ) ⊼ ( 𝜑𝜓𝜒 ) ) )
9 5 7 8 3bitr2i ( ( 𝜑𝜓𝜒 ) ↔ ( ( 𝜑𝜓𝜒 ) ⊼ ( 𝜑𝜓𝜒 ) ) )