| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ang.1 |
⊢ 𝐹 = ( 𝑥 ∈ ( ℂ ∖ { 0 } ) , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( ℑ ‘ ( log ‘ ( 𝑦 / 𝑥 ) ) ) ) |
| 2 |
|
ang180lem1.2 |
⊢ 𝑇 = ( ( ( log ‘ ( 1 / ( 1 − 𝐴 ) ) ) + ( log ‘ ( ( 𝐴 − 1 ) / 𝐴 ) ) ) + ( log ‘ 𝐴 ) ) |
| 3 |
|
ang180lem1.3 |
⊢ 𝑁 = ( ( ( 𝑇 / i ) / ( 2 · π ) ) − ( 1 / 2 ) ) |
| 4 |
1 2 3
|
ang180lem2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → ( - 2 < 𝑁 ∧ 𝑁 < 1 ) ) |
| 5 |
4
|
simprd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → 𝑁 < 1 ) |
| 6 |
|
1e0p1 |
⊢ 1 = ( 0 + 1 ) |
| 7 |
5 6
|
breqtrdi |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → 𝑁 < ( 0 + 1 ) ) |
| 8 |
1 2 3
|
ang180lem1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → ( 𝑁 ∈ ℤ ∧ ( 𝑇 / i ) ∈ ℝ ) ) |
| 9 |
8
|
simpld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → 𝑁 ∈ ℤ ) |
| 10 |
|
0z |
⊢ 0 ∈ ℤ |
| 11 |
|
zleltp1 |
⊢ ( ( 𝑁 ∈ ℤ ∧ 0 ∈ ℤ ) → ( 𝑁 ≤ 0 ↔ 𝑁 < ( 0 + 1 ) ) ) |
| 12 |
9 10 11
|
sylancl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → ( 𝑁 ≤ 0 ↔ 𝑁 < ( 0 + 1 ) ) ) |
| 13 |
7 12
|
mpbird |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → 𝑁 ≤ 0 ) |
| 14 |
13
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) ∧ - 1 < 𝑁 ) → 𝑁 ≤ 0 ) |
| 15 |
|
zlem1lt |
⊢ ( ( 0 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 0 ≤ 𝑁 ↔ ( 0 − 1 ) < 𝑁 ) ) |
| 16 |
10 9 15
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → ( 0 ≤ 𝑁 ↔ ( 0 − 1 ) < 𝑁 ) ) |
| 17 |
|
df-neg |
⊢ - 1 = ( 0 − 1 ) |
| 18 |
17
|
breq1i |
⊢ ( - 1 < 𝑁 ↔ ( 0 − 1 ) < 𝑁 ) |
| 19 |
16 18
|
bitr4di |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → ( 0 ≤ 𝑁 ↔ - 1 < 𝑁 ) ) |
| 20 |
19
|
biimpar |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) ∧ - 1 < 𝑁 ) → 0 ≤ 𝑁 ) |
| 21 |
9
|
zred |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → 𝑁 ∈ ℝ ) |
| 22 |
21
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) ∧ - 1 < 𝑁 ) → 𝑁 ∈ ℝ ) |
| 23 |
|
0re |
⊢ 0 ∈ ℝ |
| 24 |
|
letri3 |
⊢ ( ( 𝑁 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝑁 = 0 ↔ ( 𝑁 ≤ 0 ∧ 0 ≤ 𝑁 ) ) ) |
| 25 |
22 23 24
|
sylancl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) ∧ - 1 < 𝑁 ) → ( 𝑁 = 0 ↔ ( 𝑁 ≤ 0 ∧ 0 ≤ 𝑁 ) ) ) |
| 26 |
14 20 25
|
mpbir2and |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) ∧ - 1 < 𝑁 ) → 𝑁 = 0 ) |
| 27 |
3 26
|
eqtr3id |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) ∧ - 1 < 𝑁 ) → ( ( ( 𝑇 / i ) / ( 2 · π ) ) − ( 1 / 2 ) ) = 0 ) |
| 28 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 29 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → 𝐴 ∈ ℂ ) |
| 30 |
|
subcl |
⊢ ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 1 − 𝐴 ) ∈ ℂ ) |
| 31 |
28 29 30
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → ( 1 − 𝐴 ) ∈ ℂ ) |
| 32 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → 𝐴 ≠ 1 ) |
| 33 |
32
|
necomd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → 1 ≠ 𝐴 ) |
| 34 |
|
subeq0 |
⊢ ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 1 − 𝐴 ) = 0 ↔ 1 = 𝐴 ) ) |
| 35 |
28 29 34
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → ( ( 1 − 𝐴 ) = 0 ↔ 1 = 𝐴 ) ) |
| 36 |
35
|
necon3bid |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → ( ( 1 − 𝐴 ) ≠ 0 ↔ 1 ≠ 𝐴 ) ) |
| 37 |
33 36
|
mpbird |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → ( 1 − 𝐴 ) ≠ 0 ) |
| 38 |
31 37
|
reccld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → ( 1 / ( 1 − 𝐴 ) ) ∈ ℂ ) |
| 39 |
31 37
|
recne0d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → ( 1 / ( 1 − 𝐴 ) ) ≠ 0 ) |
| 40 |
38 39
|
logcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → ( log ‘ ( 1 / ( 1 − 𝐴 ) ) ) ∈ ℂ ) |
| 41 |
|
subcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝐴 − 1 ) ∈ ℂ ) |
| 42 |
29 28 41
|
sylancl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → ( 𝐴 − 1 ) ∈ ℂ ) |
| 43 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → 𝐴 ≠ 0 ) |
| 44 |
42 29 43
|
divcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → ( ( 𝐴 − 1 ) / 𝐴 ) ∈ ℂ ) |
| 45 |
|
subeq0 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝐴 − 1 ) = 0 ↔ 𝐴 = 1 ) ) |
| 46 |
29 28 45
|
sylancl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → ( ( 𝐴 − 1 ) = 0 ↔ 𝐴 = 1 ) ) |
| 47 |
46
|
necon3bid |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → ( ( 𝐴 − 1 ) ≠ 0 ↔ 𝐴 ≠ 1 ) ) |
| 48 |
32 47
|
mpbird |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → ( 𝐴 − 1 ) ≠ 0 ) |
| 49 |
42 29 48 43
|
divne0d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → ( ( 𝐴 − 1 ) / 𝐴 ) ≠ 0 ) |
| 50 |
44 49
|
logcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → ( log ‘ ( ( 𝐴 − 1 ) / 𝐴 ) ) ∈ ℂ ) |
| 51 |
40 50
|
addcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → ( ( log ‘ ( 1 / ( 1 − 𝐴 ) ) ) + ( log ‘ ( ( 𝐴 − 1 ) / 𝐴 ) ) ) ∈ ℂ ) |
| 52 |
|
logcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 53 |
52
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 54 |
51 53
|
addcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → ( ( ( log ‘ ( 1 / ( 1 − 𝐴 ) ) ) + ( log ‘ ( ( 𝐴 − 1 ) / 𝐴 ) ) ) + ( log ‘ 𝐴 ) ) ∈ ℂ ) |
| 55 |
2 54
|
eqeltrid |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → 𝑇 ∈ ℂ ) |
| 56 |
|
ax-icn |
⊢ i ∈ ℂ |
| 57 |
56
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → i ∈ ℂ ) |
| 58 |
|
ine0 |
⊢ i ≠ 0 |
| 59 |
58
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → i ≠ 0 ) |
| 60 |
55 57 59
|
divcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → ( 𝑇 / i ) ∈ ℂ ) |
| 61 |
|
2cn |
⊢ 2 ∈ ℂ |
| 62 |
|
picn |
⊢ π ∈ ℂ |
| 63 |
61 62
|
mulcli |
⊢ ( 2 · π ) ∈ ℂ |
| 64 |
63
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → ( 2 · π ) ∈ ℂ ) |
| 65 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 66 |
|
pire |
⊢ π ∈ ℝ |
| 67 |
|
pipos |
⊢ 0 < π |
| 68 |
66 67
|
gt0ne0ii |
⊢ π ≠ 0 |
| 69 |
61 62 65 68
|
mulne0i |
⊢ ( 2 · π ) ≠ 0 |
| 70 |
69
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → ( 2 · π ) ≠ 0 ) |
| 71 |
60 64 70
|
divcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → ( ( 𝑇 / i ) / ( 2 · π ) ) ∈ ℂ ) |
| 72 |
71
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) ∧ - 1 < 𝑁 ) → ( ( 𝑇 / i ) / ( 2 · π ) ) ∈ ℂ ) |
| 73 |
|
halfcn |
⊢ ( 1 / 2 ) ∈ ℂ |
| 74 |
|
subeq0 |
⊢ ( ( ( ( 𝑇 / i ) / ( 2 · π ) ) ∈ ℂ ∧ ( 1 / 2 ) ∈ ℂ ) → ( ( ( ( 𝑇 / i ) / ( 2 · π ) ) − ( 1 / 2 ) ) = 0 ↔ ( ( 𝑇 / i ) / ( 2 · π ) ) = ( 1 / 2 ) ) ) |
| 75 |
72 73 74
|
sylancl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) ∧ - 1 < 𝑁 ) → ( ( ( ( 𝑇 / i ) / ( 2 · π ) ) − ( 1 / 2 ) ) = 0 ↔ ( ( 𝑇 / i ) / ( 2 · π ) ) = ( 1 / 2 ) ) ) |
| 76 |
27 75
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) ∧ - 1 < 𝑁 ) → ( ( 𝑇 / i ) / ( 2 · π ) ) = ( 1 / 2 ) ) |
| 77 |
60
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) ∧ - 1 < 𝑁 ) → ( 𝑇 / i ) ∈ ℂ ) |
| 78 |
63
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) ∧ - 1 < 𝑁 ) → ( 2 · π ) ∈ ℂ ) |
| 79 |
73
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) ∧ - 1 < 𝑁 ) → ( 1 / 2 ) ∈ ℂ ) |
| 80 |
69
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) ∧ - 1 < 𝑁 ) → ( 2 · π ) ≠ 0 ) |
| 81 |
77 78 79 80
|
divmuld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) ∧ - 1 < 𝑁 ) → ( ( ( 𝑇 / i ) / ( 2 · π ) ) = ( 1 / 2 ) ↔ ( ( 2 · π ) · ( 1 / 2 ) ) = ( 𝑇 / i ) ) ) |
| 82 |
76 81
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) ∧ - 1 < 𝑁 ) → ( ( 2 · π ) · ( 1 / 2 ) ) = ( 𝑇 / i ) ) |
| 83 |
63 61 65
|
divreci |
⊢ ( ( 2 · π ) / 2 ) = ( ( 2 · π ) · ( 1 / 2 ) ) |
| 84 |
62 61 65
|
divcan3i |
⊢ ( ( 2 · π ) / 2 ) = π |
| 85 |
83 84
|
eqtr3i |
⊢ ( ( 2 · π ) · ( 1 / 2 ) ) = π |
| 86 |
82 85
|
eqtr3di |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) ∧ - 1 < 𝑁 ) → ( 𝑇 / i ) = π ) |
| 87 |
55
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) ∧ - 1 < 𝑁 ) → 𝑇 ∈ ℂ ) |
| 88 |
56
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) ∧ - 1 < 𝑁 ) → i ∈ ℂ ) |
| 89 |
62
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) ∧ - 1 < 𝑁 ) → π ∈ ℂ ) |
| 90 |
58
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) ∧ - 1 < 𝑁 ) → i ≠ 0 ) |
| 91 |
87 88 89 90
|
divmuld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) ∧ - 1 < 𝑁 ) → ( ( 𝑇 / i ) = π ↔ ( i · π ) = 𝑇 ) ) |
| 92 |
86 91
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) ∧ - 1 < 𝑁 ) → ( i · π ) = 𝑇 ) |
| 93 |
92
|
eqcomd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) ∧ - 1 < 𝑁 ) → 𝑇 = ( i · π ) ) |
| 94 |
93
|
olcd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) ∧ - 1 < 𝑁 ) → ( 𝑇 = - ( i · π ) ∨ 𝑇 = ( i · π ) ) ) |
| 95 |
62 56
|
mulneg1i |
⊢ ( - π · i ) = - ( π · i ) |
| 96 |
62 56
|
mulcomi |
⊢ ( π · i ) = ( i · π ) |
| 97 |
96
|
negeqi |
⊢ - ( π · i ) = - ( i · π ) |
| 98 |
95 97
|
eqtri |
⊢ ( - π · i ) = - ( i · π ) |
| 99 |
73 63
|
mulneg1i |
⊢ ( - ( 1 / 2 ) · ( 2 · π ) ) = - ( ( 1 / 2 ) · ( 2 · π ) ) |
| 100 |
28 61 65
|
divcan1i |
⊢ ( ( 1 / 2 ) · 2 ) = 1 |
| 101 |
100
|
oveq1i |
⊢ ( ( ( 1 / 2 ) · 2 ) · π ) = ( 1 · π ) |
| 102 |
73 61 62
|
mulassi |
⊢ ( ( ( 1 / 2 ) · 2 ) · π ) = ( ( 1 / 2 ) · ( 2 · π ) ) |
| 103 |
62
|
mullidi |
⊢ ( 1 · π ) = π |
| 104 |
101 102 103
|
3eqtr3i |
⊢ ( ( 1 / 2 ) · ( 2 · π ) ) = π |
| 105 |
104
|
negeqi |
⊢ - ( ( 1 / 2 ) · ( 2 · π ) ) = - π |
| 106 |
99 105
|
eqtri |
⊢ ( - ( 1 / 2 ) · ( 2 · π ) ) = - π |
| 107 |
28 73
|
negsubdii |
⊢ - ( 1 − ( 1 / 2 ) ) = ( - 1 + ( 1 / 2 ) ) |
| 108 |
|
1mhlfehlf |
⊢ ( 1 − ( 1 / 2 ) ) = ( 1 / 2 ) |
| 109 |
108
|
negeqi |
⊢ - ( 1 − ( 1 / 2 ) ) = - ( 1 / 2 ) |
| 110 |
107 109
|
eqtr3i |
⊢ ( - 1 + ( 1 / 2 ) ) = - ( 1 / 2 ) |
| 111 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) ∧ - 1 = 𝑁 ) → - 1 = 𝑁 ) |
| 112 |
111 3
|
eqtrdi |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) ∧ - 1 = 𝑁 ) → - 1 = ( ( ( 𝑇 / i ) / ( 2 · π ) ) − ( 1 / 2 ) ) ) |
| 113 |
112
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) ∧ - 1 = 𝑁 ) → ( - 1 + ( 1 / 2 ) ) = ( ( ( ( 𝑇 / i ) / ( 2 · π ) ) − ( 1 / 2 ) ) + ( 1 / 2 ) ) ) |
| 114 |
110 113
|
eqtr3id |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) ∧ - 1 = 𝑁 ) → - ( 1 / 2 ) = ( ( ( ( 𝑇 / i ) / ( 2 · π ) ) − ( 1 / 2 ) ) + ( 1 / 2 ) ) ) |
| 115 |
|
npcan |
⊢ ( ( ( ( 𝑇 / i ) / ( 2 · π ) ) ∈ ℂ ∧ ( 1 / 2 ) ∈ ℂ ) → ( ( ( ( 𝑇 / i ) / ( 2 · π ) ) − ( 1 / 2 ) ) + ( 1 / 2 ) ) = ( ( 𝑇 / i ) / ( 2 · π ) ) ) |
| 116 |
71 73 115
|
sylancl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → ( ( ( ( 𝑇 / i ) / ( 2 · π ) ) − ( 1 / 2 ) ) + ( 1 / 2 ) ) = ( ( 𝑇 / i ) / ( 2 · π ) ) ) |
| 117 |
116
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) ∧ - 1 = 𝑁 ) → ( ( ( ( 𝑇 / i ) / ( 2 · π ) ) − ( 1 / 2 ) ) + ( 1 / 2 ) ) = ( ( 𝑇 / i ) / ( 2 · π ) ) ) |
| 118 |
114 117
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) ∧ - 1 = 𝑁 ) → - ( 1 / 2 ) = ( ( 𝑇 / i ) / ( 2 · π ) ) ) |
| 119 |
118
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) ∧ - 1 = 𝑁 ) → ( - ( 1 / 2 ) · ( 2 · π ) ) = ( ( ( 𝑇 / i ) / ( 2 · π ) ) · ( 2 · π ) ) ) |
| 120 |
106 119
|
eqtr3id |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) ∧ - 1 = 𝑁 ) → - π = ( ( ( 𝑇 / i ) / ( 2 · π ) ) · ( 2 · π ) ) ) |
| 121 |
60 64 70
|
divcan1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → ( ( ( 𝑇 / i ) / ( 2 · π ) ) · ( 2 · π ) ) = ( 𝑇 / i ) ) |
| 122 |
121
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) ∧ - 1 = 𝑁 ) → ( ( ( 𝑇 / i ) / ( 2 · π ) ) · ( 2 · π ) ) = ( 𝑇 / i ) ) |
| 123 |
120 122
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) ∧ - 1 = 𝑁 ) → - π = ( 𝑇 / i ) ) |
| 124 |
123
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) ∧ - 1 = 𝑁 ) → ( - π · i ) = ( ( 𝑇 / i ) · i ) ) |
| 125 |
98 124
|
eqtr3id |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) ∧ - 1 = 𝑁 ) → - ( i · π ) = ( ( 𝑇 / i ) · i ) ) |
| 126 |
55 57 59
|
divcan1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → ( ( 𝑇 / i ) · i ) = 𝑇 ) |
| 127 |
126
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) ∧ - 1 = 𝑁 ) → ( ( 𝑇 / i ) · i ) = 𝑇 ) |
| 128 |
125 127
|
eqtr2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) ∧ - 1 = 𝑁 ) → 𝑇 = - ( i · π ) ) |
| 129 |
128
|
orcd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) ∧ - 1 = 𝑁 ) → ( 𝑇 = - ( i · π ) ∨ 𝑇 = ( i · π ) ) ) |
| 130 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
| 131 |
130
|
negeqi |
⊢ - 2 = - ( 1 + 1 ) |
| 132 |
|
negdi2 |
⊢ ( ( 1 ∈ ℂ ∧ 1 ∈ ℂ ) → - ( 1 + 1 ) = ( - 1 − 1 ) ) |
| 133 |
28 28 132
|
mp2an |
⊢ - ( 1 + 1 ) = ( - 1 − 1 ) |
| 134 |
131 133
|
eqtri |
⊢ - 2 = ( - 1 − 1 ) |
| 135 |
4
|
simpld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → - 2 < 𝑁 ) |
| 136 |
134 135
|
eqbrtrrid |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → ( - 1 − 1 ) < 𝑁 ) |
| 137 |
|
neg1z |
⊢ - 1 ∈ ℤ |
| 138 |
|
zlem1lt |
⊢ ( ( - 1 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( - 1 ≤ 𝑁 ↔ ( - 1 − 1 ) < 𝑁 ) ) |
| 139 |
137 9 138
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → ( - 1 ≤ 𝑁 ↔ ( - 1 − 1 ) < 𝑁 ) ) |
| 140 |
136 139
|
mpbird |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → - 1 ≤ 𝑁 ) |
| 141 |
|
neg1rr |
⊢ - 1 ∈ ℝ |
| 142 |
|
leloe |
⊢ ( ( - 1 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( - 1 ≤ 𝑁 ↔ ( - 1 < 𝑁 ∨ - 1 = 𝑁 ) ) ) |
| 143 |
141 21 142
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → ( - 1 ≤ 𝑁 ↔ ( - 1 < 𝑁 ∨ - 1 = 𝑁 ) ) ) |
| 144 |
140 143
|
mpbid |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → ( - 1 < 𝑁 ∨ - 1 = 𝑁 ) ) |
| 145 |
94 129 144
|
mpjaodan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → ( 𝑇 = - ( i · π ) ∨ 𝑇 = ( i · π ) ) ) |
| 146 |
2
|
ovexi |
⊢ 𝑇 ∈ V |
| 147 |
146
|
elpr |
⊢ ( 𝑇 ∈ { - ( i · π ) , ( i · π ) } ↔ ( 𝑇 = - ( i · π ) ∨ 𝑇 = ( i · π ) ) ) |
| 148 |
145 147
|
sylibr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → 𝑇 ∈ { - ( i · π ) , ( i · π ) } ) |