Metamath Proof Explorer


Theorem angcld

Description: The (signed) angle between two vectors is in ( -upi (,] pi ) . Deduction form. (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses ang.1 𝐹 = ( 𝑥 ∈ ( ℂ ∖ { 0 } ) , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( ℑ ‘ ( log ‘ ( 𝑦 / 𝑥 ) ) ) )
angcld.1 ( 𝜑𝑋 ∈ ℂ )
angcld.2 ( 𝜑𝑋 ≠ 0 )
angcld.3 ( 𝜑𝑌 ∈ ℂ )
angcld.4 ( 𝜑𝑌 ≠ 0 )
Assertion angcld ( 𝜑 → ( 𝑋 𝐹 𝑌 ) ∈ ( - π (,] π ) )

Proof

Step Hyp Ref Expression
1 ang.1 𝐹 = ( 𝑥 ∈ ( ℂ ∖ { 0 } ) , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( ℑ ‘ ( log ‘ ( 𝑦 / 𝑥 ) ) ) )
2 angcld.1 ( 𝜑𝑋 ∈ ℂ )
3 angcld.2 ( 𝜑𝑋 ≠ 0 )
4 angcld.3 ( 𝜑𝑌 ∈ ℂ )
5 angcld.4 ( 𝜑𝑌 ≠ 0 )
6 1 2 3 4 5 angvald ( 𝜑 → ( 𝑋 𝐹 𝑌 ) = ( ℑ ‘ ( log ‘ ( 𝑌 / 𝑋 ) ) ) )
7 4 2 3 divcld ( 𝜑 → ( 𝑌 / 𝑋 ) ∈ ℂ )
8 4 2 5 3 divne0d ( 𝜑 → ( 𝑌 / 𝑋 ) ≠ 0 )
9 7 8 logimclad ( 𝜑 → ( ℑ ‘ ( log ‘ ( 𝑌 / 𝑋 ) ) ) ∈ ( - π (,] π ) )
10 6 9 eqeltrd ( 𝜑 → ( 𝑋 𝐹 𝑌 ) ∈ ( - π (,] π ) )