| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ang.1 | ⊢ 𝐹  =  ( 𝑥  ∈  ( ℂ  ∖  { 0 } ) ,  𝑦  ∈  ( ℂ  ∖  { 0 } )  ↦  ( ℑ ‘ ( log ‘ ( 𝑦  /  𝑥 ) ) ) ) | 
						
							| 2 |  | mulm1 | ⊢ ( 𝐴  ∈  ℂ  →  ( - 1  ·  𝐴 )  =  - 𝐴 ) | 
						
							| 3 | 2 | ad2antrr | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 ) )  →  ( - 1  ·  𝐴 )  =  - 𝐴 ) | 
						
							| 4 |  | mulm1 | ⊢ ( 𝐵  ∈  ℂ  →  ( - 1  ·  𝐵 )  =  - 𝐵 ) | 
						
							| 5 | 4 | ad2antrl | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 ) )  →  ( - 1  ·  𝐵 )  =  - 𝐵 ) | 
						
							| 6 | 3 5 | oveq12d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 ) )  →  ( ( - 1  ·  𝐴 ) 𝐹 ( - 1  ·  𝐵 ) )  =  ( - 𝐴 𝐹 - 𝐵 ) ) | 
						
							| 7 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 8 |  | neg1ne0 | ⊢ - 1  ≠  0 | 
						
							| 9 | 7 8 | pm3.2i | ⊢ ( - 1  ∈  ℂ  ∧  - 1  ≠  0 ) | 
						
							| 10 | 1 | angcan | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 )  ∧  ( - 1  ∈  ℂ  ∧  - 1  ≠  0 ) )  →  ( ( - 1  ·  𝐴 ) 𝐹 ( - 1  ·  𝐵 ) )  =  ( 𝐴 𝐹 𝐵 ) ) | 
						
							| 11 | 9 10 | mp3an3 | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 ) )  →  ( ( - 1  ·  𝐴 ) 𝐹 ( - 1  ·  𝐵 ) )  =  ( 𝐴 𝐹 𝐵 ) ) | 
						
							| 12 | 6 11 | eqtr3d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 ) )  →  ( - 𝐴 𝐹 - 𝐵 )  =  ( 𝐴 𝐹 𝐵 ) ) |