Metamath Proof Explorer


Theorem angpieqvdlem2

Description: Equivalence used in angpieqvd . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses angpieqvd.angdef 𝐹 = ( 𝑥 ∈ ( ℂ ∖ { 0 } ) , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( ℑ ‘ ( log ‘ ( 𝑦 / 𝑥 ) ) ) )
angpieqvd.A ( 𝜑𝐴 ∈ ℂ )
angpieqvd.B ( 𝜑𝐵 ∈ ℂ )
angpieqvd.C ( 𝜑𝐶 ∈ ℂ )
angpieqvd.AneB ( 𝜑𝐴𝐵 )
angpieqvd.BneC ( 𝜑𝐵𝐶 )
Assertion angpieqvdlem2 ( 𝜑 → ( - ( ( 𝐶𝐵 ) / ( 𝐴𝐵 ) ) ∈ ℝ+ ↔ ( ( 𝐴𝐵 ) 𝐹 ( 𝐶𝐵 ) ) = π ) )

Proof

Step Hyp Ref Expression
1 angpieqvd.angdef 𝐹 = ( 𝑥 ∈ ( ℂ ∖ { 0 } ) , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( ℑ ‘ ( log ‘ ( 𝑦 / 𝑥 ) ) ) )
2 angpieqvd.A ( 𝜑𝐴 ∈ ℂ )
3 angpieqvd.B ( 𝜑𝐵 ∈ ℂ )
4 angpieqvd.C ( 𝜑𝐶 ∈ ℂ )
5 angpieqvd.AneB ( 𝜑𝐴𝐵 )
6 angpieqvd.BneC ( 𝜑𝐵𝐶 )
7 4 3 subcld ( 𝜑 → ( 𝐶𝐵 ) ∈ ℂ )
8 2 3 subcld ( 𝜑 → ( 𝐴𝐵 ) ∈ ℂ )
9 2 3 5 subne0d ( 𝜑 → ( 𝐴𝐵 ) ≠ 0 )
10 7 8 9 divcld ( 𝜑 → ( ( 𝐶𝐵 ) / ( 𝐴𝐵 ) ) ∈ ℂ )
11 6 necomd ( 𝜑𝐶𝐵 )
12 4 3 11 subne0d ( 𝜑 → ( 𝐶𝐵 ) ≠ 0 )
13 7 8 12 9 divne0d ( 𝜑 → ( ( 𝐶𝐵 ) / ( 𝐴𝐵 ) ) ≠ 0 )
14 lognegb ( ( ( ( 𝐶𝐵 ) / ( 𝐴𝐵 ) ) ∈ ℂ ∧ ( ( 𝐶𝐵 ) / ( 𝐴𝐵 ) ) ≠ 0 ) → ( - ( ( 𝐶𝐵 ) / ( 𝐴𝐵 ) ) ∈ ℝ+ ↔ ( ℑ ‘ ( log ‘ ( ( 𝐶𝐵 ) / ( 𝐴𝐵 ) ) ) ) = π ) )
15 10 13 14 syl2anc ( 𝜑 → ( - ( ( 𝐶𝐵 ) / ( 𝐴𝐵 ) ) ∈ ℝ+ ↔ ( ℑ ‘ ( log ‘ ( ( 𝐶𝐵 ) / ( 𝐴𝐵 ) ) ) ) = π ) )
16 1 8 9 7 12 angvald ( 𝜑 → ( ( 𝐴𝐵 ) 𝐹 ( 𝐶𝐵 ) ) = ( ℑ ‘ ( log ‘ ( ( 𝐶𝐵 ) / ( 𝐴𝐵 ) ) ) ) )
17 16 eqeq1d ( 𝜑 → ( ( ( 𝐴𝐵 ) 𝐹 ( 𝐶𝐵 ) ) = π ↔ ( ℑ ‘ ( log ‘ ( ( 𝐶𝐵 ) / ( 𝐴𝐵 ) ) ) ) = π ) )
18 15 17 bitr4d ( 𝜑 → ( - ( ( 𝐶𝐵 ) / ( 𝐴𝐵 ) ) ∈ ℝ+ ↔ ( ( 𝐴𝐵 ) 𝐹 ( 𝐶𝐵 ) ) = π ) )