| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ang.1 | ⊢ 𝐹  =  ( 𝑥  ∈  ( ℂ  ∖  { 0 } ) ,  𝑦  ∈  ( ℂ  ∖  { 0 } )  ↦  ( ℑ ‘ ( log ‘ ( 𝑦  /  𝑥 ) ) ) ) | 
						
							| 2 |  | angrteqvd.1 | ⊢ ( 𝜑  →  𝑋  ∈  ℂ ) | 
						
							| 3 |  | angrteqvd.2 | ⊢ ( 𝜑  →  𝑋  ≠  0 ) | 
						
							| 4 |  | angrteqvd.3 | ⊢ ( 𝜑  →  𝑌  ∈  ℂ ) | 
						
							| 5 |  | angrteqvd.4 | ⊢ ( 𝜑  →  𝑌  ≠  0 ) | 
						
							| 6 | 1 2 3 4 5 | angvald | ⊢ ( 𝜑  →  ( 𝑋 𝐹 𝑌 )  =  ( ℑ ‘ ( log ‘ ( 𝑌  /  𝑋 ) ) ) ) | 
						
							| 7 | 6 | eleq1d | ⊢ ( 𝜑  →  ( ( 𝑋 𝐹 𝑌 )  ∈  { ( π  /  2 ) ,  - ( π  /  2 ) }  ↔  ( ℑ ‘ ( log ‘ ( 𝑌  /  𝑋 ) ) )  ∈  { ( π  /  2 ) ,  - ( π  /  2 ) } ) ) | 
						
							| 8 | 4 2 3 | divcld | ⊢ ( 𝜑  →  ( 𝑌  /  𝑋 )  ∈  ℂ ) | 
						
							| 9 | 4 2 5 3 | divne0d | ⊢ ( 𝜑  →  ( 𝑌  /  𝑋 )  ≠  0 ) | 
						
							| 10 | 8 9 | logimclad | ⊢ ( 𝜑  →  ( ℑ ‘ ( log ‘ ( 𝑌  /  𝑋 ) ) )  ∈  ( - π (,] π ) ) | 
						
							| 11 |  | coseq0negpitopi | ⊢ ( ( ℑ ‘ ( log ‘ ( 𝑌  /  𝑋 ) ) )  ∈  ( - π (,] π )  →  ( ( cos ‘ ( ℑ ‘ ( log ‘ ( 𝑌  /  𝑋 ) ) ) )  =  0  ↔  ( ℑ ‘ ( log ‘ ( 𝑌  /  𝑋 ) ) )  ∈  { ( π  /  2 ) ,  - ( π  /  2 ) } ) ) | 
						
							| 12 | 10 11 | syl | ⊢ ( 𝜑  →  ( ( cos ‘ ( ℑ ‘ ( log ‘ ( 𝑌  /  𝑋 ) ) ) )  =  0  ↔  ( ℑ ‘ ( log ‘ ( 𝑌  /  𝑋 ) ) )  ∈  { ( π  /  2 ) ,  - ( π  /  2 ) } ) ) | 
						
							| 13 | 8 9 | cosarg0d | ⊢ ( 𝜑  →  ( ( cos ‘ ( ℑ ‘ ( log ‘ ( 𝑌  /  𝑋 ) ) ) )  =  0  ↔  ( ℜ ‘ ( 𝑌  /  𝑋 ) )  =  0 ) ) | 
						
							| 14 | 7 12 13 | 3bitr2d | ⊢ ( 𝜑  →  ( ( 𝑋 𝐹 𝑌 )  ∈  { ( π  /  2 ) ,  - ( π  /  2 ) }  ↔  ( ℜ ‘ ( 𝑌  /  𝑋 ) )  =  0 ) ) |