Step |
Hyp |
Ref |
Expression |
1 |
|
ang.1 |
⊢ 𝐹 = ( 𝑥 ∈ ( ℂ ∖ { 0 } ) , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( ℑ ‘ ( log ‘ ( 𝑦 / 𝑥 ) ) ) ) |
2 |
|
angrteqvd.1 |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
3 |
|
angrteqvd.2 |
⊢ ( 𝜑 → 𝑋 ≠ 0 ) |
4 |
|
angrteqvd.3 |
⊢ ( 𝜑 → 𝑌 ∈ ℂ ) |
5 |
|
angrteqvd.4 |
⊢ ( 𝜑 → 𝑌 ≠ 0 ) |
6 |
1 2 3 4 5
|
angvald |
⊢ ( 𝜑 → ( 𝑋 𝐹 𝑌 ) = ( ℑ ‘ ( log ‘ ( 𝑌 / 𝑋 ) ) ) ) |
7 |
6
|
eleq1d |
⊢ ( 𝜑 → ( ( 𝑋 𝐹 𝑌 ) ∈ { ( π / 2 ) , - ( π / 2 ) } ↔ ( ℑ ‘ ( log ‘ ( 𝑌 / 𝑋 ) ) ) ∈ { ( π / 2 ) , - ( π / 2 ) } ) ) |
8 |
4 2 3
|
divcld |
⊢ ( 𝜑 → ( 𝑌 / 𝑋 ) ∈ ℂ ) |
9 |
4 2 5 3
|
divne0d |
⊢ ( 𝜑 → ( 𝑌 / 𝑋 ) ≠ 0 ) |
10 |
8 9
|
logimclad |
⊢ ( 𝜑 → ( ℑ ‘ ( log ‘ ( 𝑌 / 𝑋 ) ) ) ∈ ( - π (,] π ) ) |
11 |
|
coseq0negpitopi |
⊢ ( ( ℑ ‘ ( log ‘ ( 𝑌 / 𝑋 ) ) ) ∈ ( - π (,] π ) → ( ( cos ‘ ( ℑ ‘ ( log ‘ ( 𝑌 / 𝑋 ) ) ) ) = 0 ↔ ( ℑ ‘ ( log ‘ ( 𝑌 / 𝑋 ) ) ) ∈ { ( π / 2 ) , - ( π / 2 ) } ) ) |
12 |
10 11
|
syl |
⊢ ( 𝜑 → ( ( cos ‘ ( ℑ ‘ ( log ‘ ( 𝑌 / 𝑋 ) ) ) ) = 0 ↔ ( ℑ ‘ ( log ‘ ( 𝑌 / 𝑋 ) ) ) ∈ { ( π / 2 ) , - ( π / 2 ) } ) ) |
13 |
8 9
|
cosarg0d |
⊢ ( 𝜑 → ( ( cos ‘ ( ℑ ‘ ( log ‘ ( 𝑌 / 𝑋 ) ) ) ) = 0 ↔ ( ℜ ‘ ( 𝑌 / 𝑋 ) ) = 0 ) ) |
14 |
7 12 13
|
3bitr2d |
⊢ ( 𝜑 → ( ( 𝑋 𝐹 𝑌 ) ∈ { ( π / 2 ) , - ( π / 2 ) } ↔ ( ℜ ‘ ( 𝑌 / 𝑋 ) ) = 0 ) ) |